Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 1: Assumptions, scope and operating range

Warianty tytułu
Języki publikacji
This article is the first of two papers on the remote sensing methods of monitoring the Baltic ecosystem, developed by a Polish team. The main aim of the five-year SatBałtyk (2010-2014) research project (Satellite Monitoring of the Baltic Sea Environment) is to prepare the technical infrastructure and set in motion operational procedures for the satellite monitoring of the Baltic environment. This system is to characterize on a routine basis the structural and functional properties of this sea on the basis of data supplied by the relevant satellites. The characterization and large-scale dissemination of the following properties of the Baltic is anticipated: the solar radiation influx to the sea's waters in various spectral intervals, energy balances of the short- and long-wave radiation at the Baltic Sea surface and in the upper layers of the atmosphere over the Baltic, sea surface temperature distribution, dynamic states of the water surface, concentrations of chlorophyll a and other phytoplankton pigments in the Baltic water, distributions of algal blooms, the occurrence of upwelling events, and the characteristics of primary organic matter production and photosynthetically released oxygen in the water. It is also intended to develop and, where feasible, to implement satellite techniques for detecting slicks of petroleum derivatives and other compounds, evaluating the state of the sea's ice cover, and forecasting the hazards from current and future storms and providing evidence of their effects in the Baltic coastal zone. The ultimate objective of the project is to implement an operational system for the routine determination and dissemination on the Internet of the above-mentioned features of the Baltic in the form of distribution maps as well as plots, tables and descriptions characterizing the state of the various elements of the Baltic environment. The main sources of input data for this system will be the results of systematic recording by environmental satellites and also special-purpose ones such as TIROS N/NOAA, MSG (currently Meteosat 9), EOS/AQUA and ENVISAT. The final effects of the SatBałtyk project are to be achieved by the end of 2014, i.e. during a period of 60 months. These two papers present the results obtained during the first 15 months of the project. Part 1 of this series of articles contains the assumptions, objectives and a description of the most important stages in the history of our research, which constitute the foundation of the current project. It also discusses the way in which SatBałtyk functions and the scheme of its overall operations system. The second article (Part 2), will discuss some aspects of its practical applicability in the satellite monitoring of the Baltic ecosystem (see Woźniak et al. (2011) in this issue).
Opis fizyczny
Bibliogr. 128 poz.
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland,
  • 1.Abramowitz M., Stegun I., 1972, Handbook of mathematical functions, Dover Publ., New York, 1046 pp.
  • 2.Antal T.K., Venediktov P. S., Konev Yu.N., Matorin D.N., Hapter R., Rubin A.B., 1999, Assessment of vertical profiles of photosynthesis of phytoplankton by fluorescentic method, Oceanology, 39 (2), 314-320.
  • 3.Antal T.K., Venediktov P. S., Matorin D.N., Ostrowska M., Woźniak B., Rubin A.B., 2001, Measurement of phytoplankton photosynthesis rate using a pump- and-probe fluorometer, Oceanologia, 43 (3), 291-313.
  • 4.Antoine D., André J.M., Morel A., 1996, Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cyc., 10 (1), 56-69.
  • 5.Antoine D., Morel A., 1996, Oceanic primary production: 1. Adaptation of spectral light-photosynthesis model in view of application to satellite chlorophyll observations, Global Biogeochem. Cyc., 10 (1), 42-55.
  • 6.Arst H., 2003, Optical properties and remote sensing of multicomponental water bodies, Springer-Praxis, New York, 231 pp.
  • 7.Barange M., Field J.G., Harris R.P., Hofmann E.E., Perry R. I., Werner F. (eds.), 2010, Marine ecosystems and global change, Oxford Univ. Press, New York, 464 pp.
  • 8.Belkin I.M., O'Reilly J.E., 2009, An algorithm for oceanic front detection in chlorophyll and SST satellite imagery, J. Marine Syst., 78 (3), 319-326.
  • 9.Blumberg A. F., Mellor G. L., 1987, A description of the three-dimensional coastal ocean circulation model, [in:] Three-dimensional coastal ocean models, N. Heaps (ed.), Am. Geophys. Union, Madison, 1-16.
  • 10.Bradtke K., Herman A., Urbański J.A., 2010, Spatial and interannual variations of seasonal sea surface temperature patterns in the Baltic Sea, Oceanologia, 52 (3), 345-362.
  • 11.Brekke C., Solberg A., 2005, Oil spill detection by satellite remote sensing, Remote Sens. Environ., 95 (1), 1-13.
  • 12.Bryan K.A., 1969, Numerical method for the study of the circulation of the World Ocean, J. Comput. Phys., 4 (3), 347-376.
  • 13.Burenkov V. I., Ershova S.V., Kopelevich O.V., Sheberstov S.V., Shevchenko V.P., 2001a, An estimate of the distribution of suspended matter in the Barents Sea waters on the basis of the SeaWiFS satellite ocean color scanner, Oceanology, 41, 622-628.
  • 14.Burenkov V. I., Vedernikov V. I., Ershova S.V., Kopelevich O.V., Sheberstov S.V., 2001b, Application of the ocean color data gathered by the SeaWiFS satellite scanner for estimating the bio-optical characteristics of waters in the Barents Sea, Oceanology, 41, 461-468.
  • 15.Campbell J., Antoine D., Armstrong R., Arrigo K., Balch W., Barber R., Behrenfeld M., Bidigare R., Bishop J., Carr M.-E., Esaias W., Falkowski P., Hoepner N., Iverson R., Keifer D., Lohrenz S., Marra J., Morel A., Ryan J., Vedemikov V., Waters K., Yentsch C., Yoder J., 2002, Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance, Global Biogeochem. Cyc., 16 (3), 74-75.
  • 16.Carr M.-E., Friedrichs M.A., Schmeltz M., Aita M.N., Antoine D., Arrigo K.R., Asanuma I., Aumont O., Barber R., Behrenfeld M., Bidigare R., Buitenhuis E.T., Campbell J., Ciotti A., Dierssen H., Dowell M., Dunne J., Esaias W., Gentili B., Gregg W., Groom S., Hoepner N., Ishizaka J., Kameda T., Le Quere C., Lohrenz S., Marra J., Melin F., Moore K., Morel A., Reddy T.E., Ryan J., Scardi M., Smyth T., Turpie K., Tilstone G., Waters K., Yamanaka Y., 2006, A comparison of global estimates of marine primary production from ocean color, Deep-Sea Res. Pt. II, 53 (5-7), 741-770.
  • 17.Chen W.-Y., Seiner J., Suzuki T., Lackner M. (eds.), 2011, Handbook of climate change mitigation, Vol. 1 & 2, 1st edn., Springer, New York, 4000 pp.
  • 18.Cox M.D., 1984, A primitive equation, 3-dimensional model of the ocean, GFDL Ocean Group Tech. Rep. No. 1, Princeton Univ., 250 pp.
  • 19.Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S.B., Bradtke K., Dera J., Woźniak B., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509-538.
  • 20.Darecki M., Kaczmarek S., Olszewski J., 2005, SeaWiFS chlorophyll algorithms for the Southern Baltic, Int. J. Remote Sens., 26 (2), 247-260.
  • 21.Darecki M., Kowalczuk P., Krężel A., Sagan S., 1993, Chlorophyll vs AVHRR satellite data during SKAGEX experiment, SiMO, 64, 49-59.
  • 22.Darecki M., Stramski D., 2004, An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea, Remote Sens. Environ., 89 (3), 326-350.
  • 23.David M., 1988, Handbook of applied advanced geostatistical ore reserve estimation, Elsevier Sci. Publ., Amsterdam, 344 pp.
  • 24.Dera J., 1963a, A probe for studying the stratification of water masses in the sea, Acta Geophys. Pol., 11, 179-185, (in Polish).
  • 25.Dera J., 1963b, Some optical properties of the waters of the Gulf of Gdańsk as indices of the structure of its water masses, Acta Geophys. Pol., 13, 15-39, (in Polish).
  • 26.Dera J., 1967, Measurements of optical quantities characterizing the conditions of photosynthesis in the Gulf of Gdańsk, Acta Geophys. Pol., 15, 187-208, (in Polish).
  • 27.Dera J., 1971, Irradiance in the euphotic zone of the sea, Oceanologia, 1, 9-98, (in Polish with English summmary).
  • 28.Dera J., 1995, Underwater irradiance as a factor affecting primary production, Diss. and monogr., 7, IOPAN, Sopot, 110 pp.
  • 29.Dera J., 2010, The SatBałtyk project: Satellite Monitoring of the Baltic Sea Environment, Oceanologia, 52 (2), 319-324.
  • 30.Dera J., Hapter R., Malewicz B., 1975, Fluctuation of light in the euphotic zone and its influence on primary production of organic matter, Merentutkimuslait. Julk., 239, 58-66.
  • 31.Dera J., Olszewski J., 1969, Widzialność podwodna, Post. Fiz., 20, 473-487.
  • 32.Dera J., Woźniak B., 2010, Solar radiation in the Baltic Sea, Oceanologia, 52 (4), 533-582.
  • 33.Dzierzbicka-Głowacka L., 2005, Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591-619.
  • 34.Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41-71.
  • 35.Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2011, Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea, Oceanologia, 53 (1), 449-470.
  • 36.Dudzińska-Nowak J., 2006, Coastline long-term changes of the selected area of the Pomeranian Bay, coastal dynamic, geomorphology and protection, EUROCOAST - LITTORAL 2006, A. Tubielewicz (ed.), Gdańsk, 163-170.
  • 37.Falkowski P.G., Knoll A.H. (eds.), 2007, The evolution of aquatic photoautotrophs, Acad. Press, New York, 456 pp.
  • 38.Ficek D., 2001, Modelling the quantum yield of photosynthesis in different marine basins, Diss. and monogr., 14, IOPAS, Sopot, 224 pp., (in Polish).
  • 39.Ficek D., Kaczmarek S., Stoń-Egiert J.,Woźniak B., Majchrowski R., Dera J., 2004, Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data, Oceanologia, 46 (4), 533-555.
  • 40.Ficek D., Majchrowski R., OstrowskaM., Kaczmarek S.,Woźniak B., Dera J., 2003, Practical applications of the multi-component marine photosynthesis model (MCM), Oceanologia, 45 (3), 395-423.
  • 41.Ficek D., Ostrowska M., Kuzio M., Pogosyan S. I., 2000a, Variability of the portion of functional PS2 reaction centres in the light of a fluorometric study, Oceanologia, 42 (2), 243-249.
  • 42.Ficek D., Woźniak B., Majchrowski R., Ostrowska M., 2000b, Influence of non-photosynthetic pigments on the measured quantum yield of photosynthesis, Oceanologia, 42 (2), 231-242.
  • 43.Furmańczyk K., 1985, Rzeźba dna strefy brzegowej na zdjęciach lotniczych i satelitarnych, Mater. Konf. Nauk., "Satelity w służbie morza", PAN, UGM, Gdynia, 6-8 maja 1985, 78-88.
  • 44.Furmańczyk K., 1994, Strefa brzegowa Półwyspu Helskiego w świetle kompleksowej interpretacji zdjęć satelitarnych, Zesz. Nauk., 2, 61-80.
  • 45.Furmańczyk K., Dudzińska-Nowak J., 2009, Extreme storm impact to the coastline changes - South Baltic example, J. Coast. Res., 56 (2), 1637-1640.
  • 46.Furmańczyk K.K., Dudzińska-Nowak J., Furmańczyk K.A., Paplińska-Swerpel B., Brzezowska N., 2011, Dune erosion as a result of the significant storms at the western Polish coast (Dziwnów Spit example), Proc. 11th Int. Coastal Symp., Szczecin, J. Coast. Res., 57 (Sp. Iss. 64), 756-759.
  • 47.Glantz M.H. (ed.), 1988, Societal responses to regional climate change. Forecasting by analogy, West View Press, Boulder-London, 403 pp.
  • 48.Gordon H.R., Morel A., 1983, Remote assessment of ocean color for interpretation of satellite visible imagery, [in:] Lecture notes on coastal and estuarine studies, M. Bowman (ed.), Springer-Verlag, New York, 114 pp.
  • 49.Herman-Iżycki L., Jakubiak B., Nowiński K., Niezgódka B., 2002, UMPL - the numerical weather prediction system for operational applications, [in:] Research works based on the ICM's UMPL numerical weather prediction system results, Wyd. ICM, Warsaw, 14-27.
  • 50.Houghton J., 1997, Global warming: the complete briefing, Cambridge Univ. Press, Cambridge, 251 pp.
  • 51.Houghton R.A., 2005, The contemporary carbon cycle, [in:] Biogeochemistry. An analysis of global change, W.H. Schlesinger (ed.), Elsevier, San Diego, 473-513.
  • 52.Hunke E., Lipscomb W., 2010, CCE: the Los Alamos Sea Ice Model documentation and software users manual version 4.1, Tech. Rep. LA-CC-06-012, Los Alamos Natl. Lab., New Mexico, 76 pp.
  • 53.Hus L., Furmańczyk K., 1985, Przegląd wybranych zjawisk lodowych rejonu Antarktyki w oparciu o zdjęcia satelitarne, Proc. Int. Symp. Photogramm. Remote Sens. Sea, Szczecin, 153-171.
  • 54.Jonasz M., Fournier G.R., 2007, Light scattering by particles in water: Theoretical and experimental constraints, Acad. Press, San Diego, 714 pp.
  • 55.Kaczmarek S., Woźniak B., 1995, The application of the optical classification of waters in the Baltic Sea investigation (Case 2 waters), Oceanologia, 37 (2), 285-297.
  • 56.Kostianoy A., Litovchenko K., Lavrova O., Mityagina M., Bocharova T., Lebedev S., Stanichny S., Soloviev D., Sirota A., Pichuzhkina O., 2006, Operational satellite monitoring of oil spill pollution in the southeastern Baltic Sea: 18 months experience, Environ. Res. Eng. Manag., 4 (38), 70-77.
  • 57.Kowalczuk P., Zabłocka M., Sagan S., Kuliński K., 2010, Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea, Oceanologia, 52 (3), 431-471.
  • 58.Kowalewska H., Krężel A., 1991, Zachmurzenie nad Południowym Bałtykiem w oparciu o dane ze stacji brzegowych i zdjęć satelitarnych, Zesz. Nauk. Uniw. Szcz., 86, 47-64.
  • 59.Kowalewski M., 1997, A three-dimensional, hydrodynamic model of the Gulf of Gdańsk, Oceanol. Stud., 26 (4), 77-98.
  • 60.Kowalewski M., Kowalewska-Kalkowska H., 2011, Performance of operationally calculated hydrodynamic forecasts during storm surges in the Pomeranian Bay and Szczecin Lagoon, Boreal Environ. Res., 16 (Suppl. A), 27-41.
  • 61.Kowalewski M., Krężel A., 2004, System automatycznego dowiązania geograficznego i korekcji geometrycznej danych AVHRR, Arch. Fotogram. Kartograf. Teledetek., XIIIb, 397-407.
  • 62.Krężel A., 1985, Solar radiation at the Baltic Sea surface, Oceanologia, 21, 5-32.
  • 63.Krężel A., 1992, Influence of aerosols on the solar energy inflow to the Baltic surface (An example of Southern Baltic), Przegl. Geofiz., XXXVII (1-2), 27-36, (in Polish).
  • 64.Krężel A., 1997, AVHRR images as a tool in marine suspended analyses in polar regions, Oceanol. Stud., 26 (2-3), 21-30.
  • 65.Krężel A., Kozłowski L., Paszkuta M., 2008, A simple model of light transmission through the atmosphere, Oceanologia, 50 (2), 125-146.
  • 66.Krężel A., Kozłowski Ł., Szymanek L., Szymelfenig M., 2005a, Influence of coastal upwelling on chlorophyll-like pigments concentration in the surface water along Polish coast of the Baltic Sea, Oceanologia, 47 (4), 433-452.
  • 67.Krężel A., Ostrowski M., Szymelfenig M., 2005b, Sea surface temperature distribution during upwelling along the Polish Baltic Sea coast, Oceanologia, 47 (4), 415-432.
  • 68.Krężel A., Paszkuta M., 2011, Automatic detection of cloud cover over the Baltic Sea, J. Atmos. Ocean. Tech., 28, 1117-1128.
  • 69.Lieth H., Whittaker R.H., 1975, Primary productivity of the biosphere, Springer-Verlag, New York, 339 pp.
  • 70.Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics of marine phytoplankton, Stud. i rozpr., 1, Pom. Akad. Pedag., Słupsk, 131 pp., (in Polish).
  • 71.Majchrowski R., Ostrowska M., 1999, Modified relationships between the occurrence of photoprotecting carotenoids of phytoplankton and Potentially Destructive Radiation in the sea, Oceanologia, 41 (4), 589-599.
  • 72.Majchrowski R., Ostrowska M., 2000, Influence of photo- and chromatic acclimation on pigment composition in the sea, Oceanologia, 42 (2), 157-175.
  • 73.Majchrowski R., Woźniak B., Dera J., Ficek D., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the "in vivo" spectral absorption of algal pigments. Part 2. Practical applications of the model, Oceanologia, 42 (2), 191-202.
  • 74.Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709-722.
  • 75.Myrberg K., Lehmann A., Raudsepp U., Szymelfenig M., Lips I., Lips U., Matciak M., Kowalewski M., Krężel A., Burska D., Szymanek L., Ameryk A., Bielecka L., Bradtke K., Gałkowska A., Gromisz S., Jędrasik J., Kaluźny M., Kozłowski Ł., Krajewska-Sołtys A., Ołdakowski B., OstrowskiM., Zalewski M., Andrejev O., Suomi I., Zhurbas V., Kauppinen O.-K., Soosaar E., Laanemets J., Uiboupin R., Talpsepp L., Golenko M., Golenko N., Vahtera E., 2008, Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Science Congress at Rostock University, Germany, 19-22 March 2007, Oceanologia, 50 (1), 95-113.
  • 76.Odum E.P., 1971, Fundamentals of ecology, 3rd edn., Saunders, Philadelphia, 574 pp.
  • 77.Olszewski J., 1973, An analysis of underwater visibility conditions in the sea, based on the example of the Gulf of Gdańsk, Oceanologia, 2, 153-225, (in Polish with English summary).
  • 78.Olszewski J. (ed.), 1995, Marine physics (8), SiMO, 68, 149 pp.
  • 79.Ołdakowski B., Kowalewski M., Jędrasik J., Szymelfenig M., 2005, Ecohydrodynamic model of the Baltic Sea, Part I: Description of the ProDeMo model, Oceanologia, 47 (4), 477-516.
  • 80.Ostrowska M., 2001, The application of fluorescence methods of the study of marine photosynthesis, Rozpr. i monogr., 15, IOPAS, Sopot, 194, (in Polish).
  • 81.Ostrowska M., Majchrowski R., Matorin D.N., Woźniak B., 2000a, Variability of the specific fluorescence of chlorophyll in the ocean. Part 1. Theory of classical "in situ" chlorophyll fluorometry, Oceanologia, 42 (2), 203-219.
  • 82.Ostrowska M., Majchrowski R., Stoń-Egiert J., Woźniak B., Ficek D., Dera J., 2007, Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 1: Total chlorophyll a distribution, Oceanologia, 49 (4), 471-489.
  • 83.Ostrowska M., Matorin D.N., Ficek D., 2000b, Variability of the specific fluorescence of chlorophyll in the ocean. Part 2. Fluorometric method of chlorophyll a determination, Oceanologia, 42 (2), 221-229.
  • 84.Pelevin V.N., Woźniak B., Koblentz-Mishke O. J., 1991, Algorithm for estimating primary production in the sea from satellite sensing, Oceanologia, 31, 57-72.
  • 85.Platt T., Sathyendranath S., 1993a, Estimators of primary production for interpretation of remotely-sensed data on ocean color, J. Geophys. Res., 98 (C8), 14561-14576.
  • 86.Platt T., Sathyendranath S., 1993b, The remote sensing of ocean primary productivity - use of a new data compilation to test satellite algorithms - comment, J. Geophys. Res., 98 (C9), 16583-16584.
  • 87.Platt T., Sathyendranath S., Cavarhill C.M., Lewis M.R., 1988, Ocean primary production and available light: further algorithms for remote sensing, Deep-Sea Res., 35 (6), 855-879.
  • 88.Platt T., Sathyendranath S., Longhurst A., 1995, Remote-sensing of primary production in the ocean - promise and fulfilment, Philos. T. Roy. Soc. B, 348, 191-201.
  • 89.Robinson I. S., 2010, Discovering the ocean from space, Springer-Verlag, Berlin, Heidelberg, 638 pp.
  • 90.Rozwadowska A., 2007, Influence of aerosol vertical profile variability on retrievals of aerosol optical thickness from NOAA AVHRR measurements in the Baltic region, Oceanologia, 49 (2), 165-184.
  • 91.Rozwadowska A., Isemer H.-J., 1998, Solar radiation fluxes at the surface of the Baltic Proper. Part 1. Mean annual cycle and influencing factors, Oceanologia, 40 (4), 307-330.
  • 92.Sandven S., Johannesen O.M., 2006, Sea ice monitoring by remote sensing, [in:] Manual of remote sensing, Vol. 6. Remote sensing of the marine environment, J.F.R. Gower (ed.), 3rd edn., ASPRS Publ., Bethesda, 241-283.
  • 93.Sathyendranath S., Platt T., Cavarhill C.M., Warnock R.E., Lewis M.R., 1989, Remote sensing of oceanic primary production: computations using a spectral model, Deep-Sea Res., 36 (3), 431-453.
  • 94.Sathyendranath S., Platt T., Stuart V., 2000, Remote sensing of ocean colour: Recent advances, exciting possibilities and unanswered questions, Proc. 5th Pacific Ocean Remote Sens. Conf. (PORSEC), 1, 6 pp.
  • 95.Schwarzer K., Diesing M., Larson M., Niedermeyer R.-O., Schumacher W., Furmańczyk K., 2003, Coastline evolution at different time scales - examples from the Pomeranian Bight, southern Baltic Sea, Mar. Geol., 194 (1-2), 79-101.
  • 96.Semtner A. J., 1974, A general circulation model for the World Ocean, UCLA Dept. Meteorol. Tech. Rep., 8, 99 pp.
  • 97.Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X.-Y., Powers J.G., 2008, A description of the advanced research WRF. Version 3, Technical Note NCAR/TN-475+STR, Natl. Cent. Atmos. Res., Boulder, 125 pp., [ v3.pdf].
  • 98.Smith R., Gent P., 2004, Reference manual for the Parallel Ocean Program (POP), Los Alamos Natl. Lab., New Mexico, 75 pp.
  • 99.Steemann-Nielsen E., 1975, Marine photosynthesis: with special emphasis on the ecological aspects, Elsevier Sci., Amsterdam, 152 pp.
  • 100.Trenberth K.E. (ed.), 1992, Climate system modelling, Cambridge Univ. Press, Cambridge, 788 pp.
  • 101.Woźniak B., 1973, An investigation of the influence of the components of seawater on the light field in the sea, SiMO, 6, 69-132, (in Polish).
  • 102.Woźniak B., 1990, Statistical relations between photosynthesis and abiotic conditions of the marine environment; an initial prognosis of the World Ocean productivity ensuing from warming up of the Earth, Oceanologia, 29, 147-174.
  • 103.Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka-Głowacka L., Ficek D., Furmańczyk K., Kowalewski M., Krężel A., Majchrowski R., Ostrowska M., Paszkuta M., Stoń-Egiert J., Stramska M., Zapadka T., 2011, SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 2: Practical applicability and preliminary results, in this issue.
  • 104.Woźniak B., Dera J., 2000, Luminescence and photosynthesis of marine phytoplankton - a brief presentation of new results, Oceanologia, 42 (2), 137-156.
  • 105.Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 454 pp.
  • 106.Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 1999, Modelling the influence of acclimation on the absorption properties of marine phytoplankton, Oceanologia, 41 (2), 187-210.
  • 107.Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the "in vivo" spectral absorption of algal pigments. Part 1. Mathematical apparatus, Oceanologia, 42 (2), 177-190.
  • 108.Woźniak B., Dera J., Ficek D., Majchrowski R., OstrowskaM., Kaczmarek S., 2003, Modelling light and photosynthesis in the marine environment, Oceanologia, 45 (2), 171-245.
  • 109.Woźniak B., Dera J., Ficek D., Ostrowska M., Majchrowski R., 2002a, Dependence of the photosynthesis quantum yield in oceans on environmental factors, Oceanologia, 44 (4), 439-459.
  • 110.Woźniak B., Dera J., Ficek D., Ostrowska M., Majchrowski R., Kaczmarek S., Kuzio M., 2002b, The current bio-optical study of marine phytoplankton, Opt. Appl., XXXII (4), 731-747.
  • 111.Woźniak B., Dera J., Koblentz-Mishke O. J., 1992a, Modeling the relationship between primary production, optical properties, and nutrients in the sea, Ocean Optics XI, Proc. SPIE, 1750, 246-275.
  • 112.Woźniak B., Dera J., Koblentz-Mishke O. J., 1992b, Bio-optical relationships for estimating primary production in the Ocean, Oceanologia, 33, 5-38.
  • 113.Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. I., Darecki M., 1997a, "IOPAS initial model" of marine primary production for remote sensing application, Oceanologia, 39 (4), 377-395.
  • 114.Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. I., Darecki M., 1997b, Statistical relationships between photosynthesis and abiotic conditions in the ocean - the IOPAS initial model for remote sensing application, Proc. SPIE, 3222, 516-528.
  • 115.Woźniak B., Dera J., Semovski S., Hapter R., Ostrowska M., Kaczmarek S., 1995, Algorithm for estimating primary production in the Baltic by remote sensing, SiMO, 68, 91-123.
  • 116.Woźniak B., Ficek D., Ostrowska M., Majchrowski R., Dera J., 2007a, Photosynthesis quantum yield in the Baltic; a new mathematical expression for remote sensing applications, Oceanologia, 49 (4), 527-542.
  • 117.Woźniak B., Hapter R., Dera J., 1989, Light curves of marine phytoplankton photosynthesis in the Baltic, Oceanologia, 27, 61-78.
  • 118.Woźniak B., Hapter R., Jonasz M., 1980, An introductory analysis of the rate and energetic efficiency of photosynthesis in the Gulf of Gdańsk, [in:] Baltic ecosystems, Proc. Int. Symp. COMECON, Part 2, MIR, Gdynia, 400-414, (in Russian).
  • 119.Woźniak B., Krężel A., Darecki M., Woźniak S.B., Majchrowski R., Ostrowska M., Kozłowski Ł., Ficek D., Olszewski J., Dera J., 2008, Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus, Oceanologia, 50 (4), 451-508.
  • 120.Woźniak B., Krężel A., Dera J., 2004, Development of a satellite method for Baltic ecosystem monitoring (DESAMBEM) - an ongoing project in Poland, Oceanologia, 46 (3), 445-455.
  • 121.Woźniak B., Majchrowski R., Ostrowska M., Ficek D., Dera J., Kunicka J., 2007b, Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 3: Non-photosynthetic pigment absorption factor, Oceanologia, 49 (4), 513-526.
  • 122.Woźniak B., Ostrowska M., 1990a, Composition and resources of photosynthetic pigments of the sea phytoplankton, Oceanologia, 29, 91-115.
  • 123.Woźniak B., Ostrowska M., 1990b, Optical absorption properties of phytoplankton in various seas, Oceanologia, 29, 117-146.
  • 124.Woźniak B., Pelevin V.N., 1991, Optical classifications of the seas in relation to phytoplankton characteristics, Oceanologia, 31, 25-55.
  • 125.Woźniak M., Krężel A., 2010, Sea surface temperature retrieval from MSG/SEVIRI data in the Baltic Sea area, Oceanologia, 52 (3), 331-344.
  • 126.Zapadka T., Krężel A., Woźniak B., 2008, Longwave radiation budget at the Baltic Sea surface from satellite and atmospheric model data, Oceanologia, 50 (2), 147-166.
  • 127.Zapadka T., Woźniak B., Dera J., 2007, A more accurate formula for calculating the net longwave radiation flux in the Baltic Sea, Oceanologia, 49 (4), 449-470.
  • 128.Zapadka T., Woźniak S.B., Woźniak B., 2001, A simple formula for Baltic Sea surface net infrared radiation flux, Oceanologia, 43 (3), 265-277.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.