Czasopismo 
Commentationes Mathematicae 

Tytuł artykułu 
A modified hat problem 

Autorzy  Krzywkowski, M.  
Treść / Zawartość  http://wydawnictwa.ptm.org.pl/index.php/commentationesmathematicae/  
Warianty tytułu 


Języki publikacji  EN  
Abstrakty 


Słowa kluczowe 


Wydawca 
Polskie Towarzystwo Matematyczne 

Czasopismo  Commentationes Mathematicae  
Rocznik  2010  
Tom  Vol. 50, [Z] 2  
Strony  121126  
Opis fizyczny  Bibliogr. 21 poz.  
Twórcy 


Bibliografia 
[1] G. Aggarwal, A. Fiat, A. Goldberg, J. Hartline, N. Immorlica, and M. Sudan, Derandomization of auctions, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, 619625, ACM, New York, 2005.
[2] J. Aspnes, R. Beigel, M. Furst, and S. Rudich, The expressive power of voting polynomials, Combinatorica 14 (1994), 135148. [3] R. Beigel, L. Fortnow, and F. Stephan, Infinitelyoften autoreducible sets, SIAM Journal on Computing 36 (2006), 595608. [4] Berkeley Riddles, www.ocf.berkeley.edu/ wwu/riddles/hard.shtml. [5] M. Bernstein, The hat problem and Hamming codes, MAA Focus, November, 2001, 46. [6] W. Blum, Denksport f¨ur Huttr¨ager, Die Zeit, May 3, 2001. [7] M. Breit, D. Deshommes, and A. Falden, Hats required: perfect and imperfect strategies for the hat problem, manuscript. [8] E. Brown, K. Mellinger, Kirkman's schoolgirls wearing hats and walking through fields of numbers, Mathematics Magazine 82 (2009), 315. [9] E. Burke, S. Gustafson, and G. Kendall, A Puzzle to challenge genetic programming, Genetic Programming, 136147, Lecture Notes in Computer Science, Springer, 2002. [10] S. Butler, M. Hajianghayi, R. Kleinberg, and T. Leighton, Hat guessing games, SIAM Journal on Discrete Mathematics 22 (2008), 592605. [11] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, North Holland, 1997. [12] T. Ebert, Applications of recursive operators to randomness and complexity, Ph.D. Thesis, University of California at Santa Barbara, 1998. [13] T. Ebert and W. Merkle, Autoreducibility of random sets: a sharp bound on the density of guessed bits, Mathematical foundations of computer science 2002, 221233, Lecture Notes in Computer Science, 2420, Springer, Berlin, 2002. [14] T. Ebert, W. Merkle, and H. Vollmer, On the autoreducibility of random sequences, SIAM Journal on Computing32 (2003), 15421569. [15] T. Ebert and H. Vollmer, On the autoreducibility of random sequences, Mathematical foundations of computer science 2000 (Bratislava), 333342, Lecture Notes in Computer Science, 1893, Springer, Berlin, 2000. [16] U. Feige, You can leave your hat on (if you guess its color), Technical Report MCS0403, Computer Science and Applied Mathematics, The Weizmann Institute of Science, 2004, 10 pp. [17] W. Guo, S. Kasala, M. Rao, and B. Tucker, The hat problem and some variations, Advances in distribution theory, order statistics, and inference, 459479, Statistics for Industry and Technology, Birkh¨auser Boston, 2007. [18] N. Immorlica, Computing with strategic agents, Ph.D. Thesis, Massachusetts Institute of Technology, 2005. [19] H. Lenstra and G. Seroussi, On hats and other covers, IEEE International Symposium on Information Theory, Lausanne, 2002. [20] J. Poulos, Could you solve this $1 million hat trick?, abcNews, November 29, 2001. [21] S. Robinson, Why mathematicians now care about their hat color, The New York Times, Science Times Section, page D5, April 10, 2001. 

Kolekcja  BazTech  
Identyfikator YADDA  bwmeta1.element.baztecharticleBUS800120003  
Identyfikatory 
