Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Fundamenta Informaticae

Tytuł artykułu

A Computer Scientist's Guide to the Regulatory Genome

Autorzy Wilczyński, B.  Hvidste, T.R. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Recent years have seen a wealth of computational methods applied to problems stemming from molecular biology. In particular, with the completion of many new full genome sequences, great advances have been made in studying the role of non-protein-coding parts of the genome, reshaping our understanding of the role of DNA sequences. Recent breakthroughs in experimental technologies allowing us to inspect the innards of cells on a genomic scale has provided us with unprecedented amounts of data, posing new computational challenges for scientists working to uncover the secrets of life. Due to the binary-like nature of the DNA code and switch-like behavior of many regulatory mechanisms, many of the questions that are currently in focus in biology are surprisingly related to problems that have been of long-term interest to computer scientists. In this review, we present a glimpse into the current state of research in computational methods applied to modeling the regulatory genome. Our aim is to cover current approaches to selected problems from molecular biology that we consider most interesting from the perspective of computer scientists as well as highlight new challenges that will most likely draw the attention of computational biologists in the coming years.
Słowa kluczowe
EN computational biology   gene regulation   DNA motifs   regulatory elements  
Wydawca IOS Press
Czasopismo Fundamenta Informaticae
Rocznik 2010
Tom Vol. 103, nr 1-4
Strony 323--332
Opis fizyczny Bibliogr. 45 poz.
autor Wilczyński, B.
autor Hvidste, T.R.
[1] Andersson, C. R., Hvidsten, T. R., Isaksson, A., Gustafsson, M. G., Komorowski, J.: Revealing cell cycle control by combining model-based detection of periodic expression with cis-regulatory descriptors, BMCbSystems Biology, 1, 2007, 45.
[2] Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., Sherlock, G.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nature Genetics, 25(1), 2000, 25-29.
[3] Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles, Molecular Systems Biology, 3, 2007, 78.
[4] Beer, M. A., Tavazoie, S.: Predicting gene expression from sequence, Cell, 117(2), 2004, 185-198.
[5] Benner, S., Sismour, A.: Synthetic biology, Nature Reviews Genetics, 6(7), 2005, 533-543.
[6] Berman, B. P., Nibu, Y., Pfeiffer, B. D., Tomancak, P., Celniker, S. E., Levine, M., Rubin, G. M., Eisen, M. B.: Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome, Proceedings of the National Academy of Sciences of the United States of America, 99(2), 2002, 757-762.
[7] Bryne, J., Valen, E., Tang, M., Marstrand, T., Winther, O., da Piedade, I., Krogh, A., Lenhard, B., Sandelin, A.: JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update, Nucleic Acids Research, 36, 2008, D102-D106.
[8] Cai, H., Arnosti, D., Levine, M.: Long-range repression in the Drosophila embryo, Proceedings of the National Academy of Sciences of the United States of America, 93, 1996, 9309-9314.
[9] Church, G., et al.: Personal Genome Project,
[10] Ciliberti, S., Martin, O., Wagner, A.: Robustness can evolve gradually in complex regulatory gene networks with varying topology, PLoS Computational Biology, 3(2), 2007, e15.
[11] Durbin, R., Altshuler, D., McVean, G., Abecasis, G., Brooks, L.: 1000 genomes project,
[12] Gardner, T., Cantor, C., Collins, J.: Construction of a genetic toggle switch in Escherichia coli, Nature, 403, 2000, 339-342.
[13] Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M., Merryman, C., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E. A., Young, L., Qi, Z. Q., Segall-Shapiro, T. H., Calvey, C. H., Parmar, P. P., Hutchison, C. A., r., Smith, H. O., Venter, J. C.: Creation of a bacterial cell controlled by a chemically synthesized genome, Science, 329(5987), 2010, 52-56.
[14] Hallikas, O., Palin, K., Sinjushina, N., Rautiainen, R., Partanen, J., Ukkonen, E., Taipale, J.: Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity, Cell, 124(1), 2006, 47-59.
[15] Hare, E., Peterson, B., Iyer, V., Meier, R., Eisen, M.: Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation, PLoS Genetics, 4(6), 2008, e1000106.
[16] van Helden, J.: Regulatory Sequence Analysis Tools, Nucleic Acids Research, 31(13), 2003, 3593-3596.
[17] Hertz, G. Z., Stormo, G. D.: Identifying DNA and protein patterns with statistically significant alignments of multiple sequences, Bioinformatics, 15(7-8), 1999, 563-577.
[18] Hughes, J., Estep, P., Tavazoie, S., Church, G.: Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae, Journal of molecular biology, 296(5), 2000, 1205-1214.
[19] Hvidsten, T. R., Wilczynski, B., Kryshtafovych, A., Tiuryn, J., Komorowski, J., Fidelis, K.: Discovering regulatory binding-site modules using rule-based learning, Genome Research, 15(6), 2005, 856-866.
[20] Kauffman, S.: Homeostasis and differentiation in random genetic control networks, Nature, 224(5215), 1969, 177-178.
[21] Kim, J., White, K., Winfree, E.: Construction of an in vitro bistable circuit from synthetic transcriptional switches, Molecular Systems Biology, 2, 2006, 68.
[22] King, M., Wilson, A.: Evolution at two levels in humans and chimpanzees, Science, 188(4184), 1975, 107-116.
[23] Loots, G., Ovcharenko, I., Pachter, L., Dubchak, I., Rubin, E.: rVista for comparative sequence-based discovery of functional transcription factor binding sites, Genome Research, 12(5), 2002, 832-839.
[24] Mahony, S., Benos, P.: STAMP: a web tool for exploring DNA-binding motif similarities, Nucleic acids research, 35, 2007, W253-W258.
[25] Patwardhan, R., Lee, C., Litvin, O., Young, D., Pe'er, D., Shendure, J.: High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis, Nature biotechnology, 27(12), 2009, 1173-1175.
[26] Pilpel, Y., Sudarsanam, P., Church, G. M.: Identifying regulatory networks by combinatorial analysis of promoter elements, Nature Genetics, 29(2), 2001, 153-159.
[27] Sanchez, L., Chaouiya, C., Thieffry, D.: Segmenting the fly embryo: logical analysis of the role of the segment polarity cross-regulatory module, International Journal of Developmental Biology, 52(8), 2008, 1059-1075.
[28] Schneider, T., Stephens, R.: Sequence logos: a new way to display consensus sequences, Nucleic Acids Research, 18(20), 1990, 6097-6100.
[29] Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data, Nature Genetics, 34(2), 2003, 166-176.
[30] Segal, E., Yelensky, R., Koller, D.: Genome-wide discovery of transcriptional modules from DNA sequence and gene expression, Bioinformatics, 19(Suppl 1), 2003, I273-I282.
[31] Shannon, C., Petigara, N., Seshasai, S.: A Mathematical Theory of Communication, Bell System Technical Journal, 27, 1948, 379-423.
[32] Sharan, R., Ben-Hur, A., Loots, G., Ovcharenko, I.: CREME: Cis-Regulatory Module Explorer for the human genome, Nucleic acids research, 32, 2004, W253-W256.
[33] Sharon, E., Lubliner, S., Segal, E.: A Feature-Based Approach to Modeling ProteinDNA Interactions, PloS Computational Biology, 4(8), 2008, e1000154.
[34] Stenson, P., Ball, E., Mort, M., Phillips, A., Shiel, J., Thomas, N., Abeysinghe, S., Krawczak, M., Cooper, D.: Human gene mutation database (HGMD⃝R ): 2003 update, Human mutation, 21(6), 2003, 577-581.
[35] Tompa, M., Li, N., Bailey, T. L., Church, G. M., De Moor, B., Eskin, E., Favorov, A. V., Frith, M. C., Fu, Y., Kent, W. J., Makeev, V. J., Mironov, A. A., Noble, W. S., Pavesi, G., Pesole, G., Regnier, M., Simonis, N., Sinha, S., Thijs, G., van Helden, J., Vandenbogaert, M., Weng, Z., Workman, C., Ye, C., Zhu, Z.: Assessing computational tools for the discovery of transcription factor binding sites, Nature Biotechnology, 23(1), 2005, 137-144.
[36] Tsonis, P.: Anatomy of gene regulation: A three-dimensional structural analysis, Garland Publishing, 2003.
[37] Turing, A. M.: The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London, 237(641), 1952, 37-72.
[38] Visel, A., Akiyama, J., Shoukry, M., Afzal, V., Rubin, E., Pennacchio, L.: Functional autonomy of distantacting human enhancers, Genomics, 93(6), 2009, 509-513.
[39] Wasserman, W., Sandelin, A.: Applied bioinformatics for the identification of regulatory elements, Nature Reviews Genetics, 5(4), 2004, 276-287.
[40] Wasserman, W. W., Fickett, J. W.: Identification of regulatory regions which confer muscle-specific gene expression, Journal of Molecular Biology, 278(1), 1998, 167-181.
[41] Wilczynski, B., Darzynkiewicz, M., Tiuryn, J.: MEMOFinder: combining de novo motif prediction methods with a database of known motifs, Nature Precedings, 2008, Available from
[42] Wilczynski, B., Dojer, N., Patelak, M., Tiuryn, J.: Finding evolutionarily conserved cis-regulatory modules with a universal set of motifs, BMC bioinformatics, 10, 2009, 82.
[43] Wilczynski, B., Furlong, E.: Challenges for modeling global gene regulatory networks during development: Insights from Drosophila, Developmental Biology, 340(2), 2010, 161-169.
[44] Wilczynski, B., Hvidsten, T. R., Kryshtafovych, A., Tiuryn, J., Komorowski, J., Fidelis, K.: Using local gene expression similarities to discover regulatory binding site modules, BMC Bioinformatics, 7, 2006, 505.
[45] Yuan, Y., Guo, L., Shen, L., Liu, J. S.: Predicting gene expression from sequence: a reexamination, PloS Computational Biology, 3(11), 2007, e243.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BUS8-0011-0016