Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BUS8-0009-0083

Czasopismo

Archives of Environmental Protection

Tytuł artykułu

The effect of soil contamination level and plant origin on contents of arsenic, cadmium, zinc, and arsenic compounds in Mentha Aquatica L

Autorzy Száková, J.  Tlustoš, P.  Goessler, W.  Pokorný, T.  Findenig, S.  Balik, J. 
Treść / Zawartość http://www.ipis.zabrze.pl/index.php/pl/nauka/pm-archiwum http://www.czasopisma.pan.pl/ http://www.degruyter.com/view/j/aep
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Water mint (Mentha aquatica L.) belongs to the arsenic tolerant plant species suitable for cultivation in Central European climate conditions. Therefore, its possible application for remediation of contaminated soil was investigated in pot and field experiments. Two M. aquatica plants of different origin, i) commercially market-available mint plants, and ii) plants habituated at the arsenic contaminated former mining area in southern Tuscany (Italy) were tested for their arsenic uptake, transformation, and speciation. The total arsenic concentrations in the experimental soils varied from 21 to 1573 mg As kg-1, the mobile fractions did not exceed 2% of total soil arsenic. The mint plants originating from the contaminated area were able to remove ~400 μg of arsenic per pot, whereas the commercial plant removed a significantly lower amount (~300 μg of arsenic per pot). Only arsenite and arsenate, but no organoarsenic compounds were identified in both stems and leaves. Arsenate was the predominant arsenic compound and reached up to 80% regardless of the origin of the mint plants. Although M. aquatica seems to be able to grow in contaminated soils without symptoms of phytotoxicity, its efficiency to remove arsenic from the soil is limited as can be demonstrated by total elimination of As from individual pots not exceeding 0.1%. Moreover, the application of plants originating from the contaminated site did not result in sufficient increase of potential phytoextraction efficiency of M. aquatica. Although not suitable for phytoextraction the M. aquatica plants can be used as vegetation cover of the contaminated soil at the former mining areas.
Słowa kluczowe
PL Mentha aquatica   arsen   kadm   cynk   specjacja   obszar skażony   zanieczyszczenia gleby   fitostabilizacja  
EN Mentha aquatica   arsenic   cadmium   zinc   speciation   contaminated area   phytostabilization  
Wydawca Polish Academy of Sciences, Institute of Environmental Engineering, Committee of Environmental Engineering
Czasopismo Archives of Environmental Protection, ISSN 2083-4772
Rocznik 2011
Tom Vol. 37, no. 2
Strony 109--121
Opis fizyczny Bibliogr. 45 poz., tab., wykr.
Twórcy
autor Száková, J.
autor Tlustoš, P.
autor Goessler, W.
autor Pokorný, T.
autor Findenig, S.
autor Balik, J.
  • Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences, CZ-165 21 Prague 6, Czech Republic, szakova@af.czu.cz
Bibliografia
[1] Malec J., P. Pauliš: Kutnohorský rudní revír a projevy zaniklé důlní a hutní činnosti na jeho území. Bull. min.- petrolog. odd. Nár. Muz. v Praze, 4-5, 84-105 (1997).
[2] Ma L.Q., K.M. Komar, C. Tu, W.H. Zhang, Y. Cai, E.D. Kennelley: A fern that hyperaccumulates arsenic n- A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature, 409, 579 (2001).
[3] Visoottiviseth P., K. Francesconi, W. Sridokchan: The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ. Pollut., 118, 453-461 (2002).
[4] Zhao F.J., S.J. Dunham, S.P. McGrath: Arsenic hyperaccumulation by different fern species. New Phytologist, 156, 27-31 (2002).
[5] Agostini F., A.C.A. dos Santos, M. Rossato, M.R. Pansera, P.L. L.A. dos Santos, Serafini, R. Molon, P. Moyna: Essential oil yield and composition of Lamiaceae species growing in southern Brazil. Braz. Arch. Biol. Technol. 52, 473-478 (2009).
[6] Conforti F., S. Sosa, M. Marrelli, F. Menichini, G.A. Statti, D. Uzunov, A. Tubaro, R. Della Loggia: In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol. 116, 144-151 (2008).
[7] Esmaeili A., A. Rustayian, S. Masoudi, K. Nadji: Composition of the essential oils of Mentha aquatica L. and Nepeta meyeri Benth. from Iran. J. Essent. Oil Res. 18, 263-265 (2006).
[8] Samecka-Cymerman A., A.J. Kempers: Bioindication of heavy metals with aquatic macrophytes: The case of a stream polluted with power plant sewages in Poland. J. Toxicol. Environ. Health 62, 57-67 (2000).
[9] Zheljazkov V.D., N.E. Nielsen: Effect of heavy metals on peppermint and cornmint. Plant Soil. 178, 59-66 (1996).
[10] Zurayk R., B. Sukkariyah, R. Baalbaki: Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water Air Soil Pollut. 127, 373-388 (2001).
[11] Zurayk R., B. Sukkariyah, R.Baalbaki, D. Abi Ghanem: Ni phytoaccumulation in Mentha aquatica L. and Mentha silvestris L. Water Air Soil Pollut. 139, 355-364 (2002).
[12] Saygideger S., M. Dogan: Influence of pH on lead uptake, chlorophyll and nitrogen content of Nasturtium officinale R. Br. and Mentha aquatica L. J. Environ. Biol. 26, 753-759 (2005).
[13] Sanità di Toppi L., R. Gabbrielli: Response to cadmium in higher plants. Environ Exp Bot, 41, 105-130 (1999).
[14] Baroni F., A. Boscagli, L.A. DiLella, G. Protano, F. Riccobono: Arsenic in soil and vegetation of contaminated areas in southern Tuscany (Italy). J. Geochem. Expl. 81, 1-14 (2004).
[15] Száková, J; P. Tlustoš; W Goessler; S. Findenig, E. Richtrová, J. Balik: A comparison of arsenic mobility in Phaseolus vulgaris, Mentha aquatica, and Pteris cretica rhizosphere. Centr. Eur. J. Biol. 4, 107-116 (2009).
[16] Králová L., J. Száková, Š. Kubík, P. Tlustoš, J. Balík: The variability of arsenic and other risk element uptake by individual plant species growing on contaminated soil. Soil Sedim. Contam. 19, 617-634 (2010).
[17] Mehlich A. Mehlich: 3 Soil Test Extractant: A modification of Mehlich 2 Extractant. Comm. Soil Sci. Plant Anal. 15, 1409-1416 (1984).
[18] Public notice No. 13/1994, regulating some details concerning the preservation of agricultural lands available. Czech Ministry of the Environment, Prague (1994).
[19] Száková J., P. Tlustoš, J. Balík, D. Pavlíková, M. Balíková: Efficiency of extractants to release As, Cd, and Zn from main soil compartments, Analusis 28, 808-812 (2000).
[20] Wenzel W.W., N. Kirchbaumer, T. Prohaska, G. Stingeder, E. Lombi, D.C. Adriano: Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 436, 1-15 (2001).
[21] ISO 11260. Standard of Soil Quality - Determination of Effective cation Exchange Capacity and Base Saturation Level Using Barium Chloride Solution. International Organization for Standardization (1994).
[22] Sims J.R., V.A. Haby: Simplified colorimetric determination of soil organic matter. Soil Sci. 112, 137-141 (1971).
[23] Miholová D., P. Mader, J. Száková, A. Slámová, Z. Svatoš: Czechoslovakian biological certified reference materials and their use in the analytical quality assurance system in a trace element laboratory. Fresenius J. Anal. Chem. 345, 256-260 (1993).
[24] Száková J., P. Tlustoš, W.Goessler, D. Pavlíková, J. Balík: Comparison of mild extraction procedures for determination of arsenic compounds in different parts of pepper plants (Capsicum annum, L.). Appl. Organomet. Chem. 19, 308-314 (2005).
[25] Brodie K., B. Frary, B. Sturman, L. Voth: An automated vapor generation accessory for atomic absorption analysis. Varian Instruments at Work AA 38, 1-8 (1983).
[26] Schmeisser E., W. Goessler, N. Kienzl, K.A. Francesconi: Volatile analytes formed from arsenosugars: Determination by HPLC-HG-ICPMS and implications for arsenic speciation analyses. Anal. Chem. 76, 418-423 (2004).
[27] Hyršl J., M. Kaden: Eine Paragenese von Eisen-Arsenaten von Kaňk bei Kutná Hora in Böhmen und Munzig bei Meissen in Sachsen. Aufschluss 43, 95-102 (1992).
[28] Száková J., P. Tlustoš, D. Pavlíková, A. Hanč, M. Batysta: Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions. Chem. Pap. 61, 276-281 (2007).
[29] Hudson-Edwards K.A., S.L. Houghton, A. Osborn: Extraction and analysis of arsenic in soils and sediments, Trends Anal. Chem. 23, 745-752 (2004).
[30] Brooks R.R.: Plants that hyperaccumulate heavy metals. CAB INTERNATIONAL. Walligford. UK. New York. USA (1998).
[31] Smith E., R Naidu, A.M. Alston: Chemistry of arsenic in soils: I. Sorption of arsenate and arsenite by four Australian soils. J. Environ. Qual. 28, 1719-1726 (1999).
[32] Smith E, R. Naidu, A.M. Alston: Chemistry of arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption. J. Environ. Qual. 31, 557-563 (2002).
[33] Chaney R. L. In: Final Report of the Workshop on the Intern.Transportation. Pan American Health Organization, Washington (1985).
[34] Directive No. 2002/32/ES of European Parliament and Council of Europe concerning xenobiotics in feedstuffs (2002).
[35] Zheljazkov V.D., L.E. Craker, B.S. Xing: Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ. Exper. Bot. 58, 9-16 (2006).
[36] Otte M.L., C.C. Kearns, M.O. Doyle: Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bull. Environ. Contam. Toxicol. 55, 154-161 (1995).
[37] Robinson B., N. Kim, M. Marchetti, C. Moni, L. Schroeter, C. van den Dijssel, G. Milne, B. Clothier: Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ. Exper. Bot. 58, 206-215 (2006).
[38] Geiszinger A., W. Goessler, W. Kosmus: Organoarsenic compounds in plants and soil on top of an ore vein. Appl. Organomet. Chem. 16, 245-249 (2002).
[39] Kuehnelt D., J. Lintschinger, W. Goessler: Arsenic compounds in terrestrial organisms. IV. Green plants and lichens from an old arsenic smelter site in Austria. Appl. Organometall. Chem. 14, 411-420 (2000).
[40] Dercová K., J. Makovníková, G. Barančíková, J. Žuffa: Bioremediácia toxických kovov kontaminujúcich vody a pôdy. Chem. Listy 99, 682-693 (2005).
[41] Iskandar I.K., M.B. Kirkham: Trace Elements in Soils. Lewis Publisher, CRC Press Boca Raton (2001).
[42] Gonzaga M.I.S., J.A.G. Santos, L.Q. Ma: Arsenic phytoextraction and hyperaccumulation by fern species. Sci. agric. 63, 90-101 (2006).
[43] Reddy C. N., W. H. Patrick: Effect of redox potential and pH on the uptake of cadmium and lead by rice plants. J. Environ. Qual. 6, 259-262 (1977).
[44] Gavi F., T. Basta, W.R. Raun: Wheat grain cadmium as affected by long-term fertilization and soil acidity. J. Environ. Qual., 26, 265-271 (1997).
[45] Alloway B.J.: Heavy Metals in Soils. Blackie and Son Ltd., Glasgow and London (1990).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BUS8-0009-0083
Identyfikatory
BazTech ID BUS8-0009-0083