Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button



Tytuł artykułu

Solar radiation in the Baltic Sea

Autorzy Dera, J.  Woźniak, B. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The influx of solar radiation to the Baltic Sea and its penetration into its waters is described on the basis of selected results of optical and bio-optical studies in the Baltic published by various authors during the past ca 50 years. The variability in the natural irradiance of this sea is illustrated on time scales from short-term fluctuations occurring during a single day to differences in mean monthly values over a period of many years. Data on variability of the proportions between UV, VIS and IR energy in the light reaching the sea surface are also discussed. Long-term monthly mean values of the incident solar radiation flux at the surface of the Baltic Proper are given; they were obtained from meteorological and solar radiation measurements and model approximations. The transmittances of these mean monthly radiation fluxes across the surface of the Baltic are given, as are the typical energy and spectral characteristics of the underwater irradiance, its attenuation with depth in the sea and the associated euphotic zone depths, as well as typical ranges of variability of these characteristics in different Baltic basins. Some of these characteristics are illustrated by typical empirical data. These mean values are not fully representative, however, because with the sole use of classical in situ measurement methods from on board research vessels in the Baltic, it has not been possible to gather a sufficiently representative set of empirical data that would adequately reflect the variability of the optical characteristics of all the basins of this sea. The article goes on to introduce the statistical model of vertical distributions of chlorophyll a concentration in the Baltic and the bio-optical model of Baltic Case 2 waters, the use of which contribute very significantly to this description of the optical characteristics and will enable this data set to be hugely expanded to include all the Baltic basins. This opportunity is presented by the optical parameterization of Baltic Case 2 waters, i.e. by the mathematical formulas of the model linking the coefficient of attenuation of downward irradiance with the surface chlorophyll a concentration, as well as the method developed for the efficient and systematic satellite remote sensing of the chlorophyll a concentration over the entire Baltic Sea area.
Słowa kluczowe
EN solar radiation   Baltic Sea   radiant energy total   underwater irradiance attenuation   irradiance spectra   euphotic zone  
Wydawca Polish Academy of Sciences, Institute of Oceanology
Czasopismo Oceanologia, ISSN 0078-3234
Rocznik 2010
Tom No. 52 (4)
Strony 533--582
Opis fizyczny bibliogr. 134 poz., tab., wykr.
autor Dera, J.
autor Woźniak, B.
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
1.ACRIM, 2010, Active Cavity Radiometer Irradiance Monitor, index.htm
2.Antoine D., Morel A., 1996, Oceanic primary production: 1. Adaptation of spectral light-photosynthesis model in view of application to satellite chlorophyll observations, Global Biogeochem. Cy., 10 (1), 42-55.
3.Atwater M.A., Brown P. S. Jr., 1974, Numerical computation of the latitudinal variation of solar radiation for an atmosphere of varying opacity, J. Appl. Meteorol., 13 (2), 289-297.
4.Augustyn M., 1985, Characteristics of the southern Baltic climate, IMGW, Gdynia, 61 pp., (in Polish).
5.Berger F.H., 2002, Surface radiant and energy flux densities inferred from satellite data for the BALTEX watershed, Boreal Environ. Res., 7 (4), 343-351.
6.Bignami F., Marullo S., Santoleri R., Schiano M.E., 1995, Longwave radiation budget in the Mediterranean Sea, J. Geophys. Res., 100 (C2), 2501-2514.
7.Crommelynck D., Dewitte S., 1997, Solar constant temporal and frequency characteristics, Sol. Phys., 173 (1), 177-191.
8.Czyszek W., Wensierski W., Dera J., 1979, Inflow and absorption of solar light energy in the Baltic waters, Stud. i Mater. Oceanol., 26, 103-140, (in Polish).
9.Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S.B., Bradtke K., Dera J.,Woźniak B., 2008, Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509-538.
10.Darecki M., Kaczmarek S., Olszewski J., 2005, SeaWiFS ocean color chlorophyll algorithms for the southern Baltic Sea, Int. J. Remote Sens., 26 (2), 247-260.
11.Darecki M., Stramski D., 2004, An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea, Remote Sens. Environ., 89 (3), 326-350.
12.Darecki M., Weeks A., Sagan S., Kowalczuk P., Kaczmarek S., 2003, Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms, Cont. Shelf Res., 23 (3-4), 237-250.
13.Darula S., Kittler R., Gueymard C.A., 2005, Reference luminous solar constant and solar luminance for illuminance calculations, Sol. Energy, 79 (5), 559-565.
14.Dera J., 1963, Some optical properties of the Gulf of Gdańsk waters as an index of its water mass structure, Acta Geophys. Pol., 13, 15-39, (in Polish).
15.Dera J., 1970, On two layers of different light conditions in the euphotic zone of the sea, Acta Geophys. Pol., 18, 287-294.
16.Dera J., 1992, Marine physics, Elsevier Oceanogr. Ser. 53, Amsterdam-Oxford-New York-Tokyo, Warsaw, 510 pp.
17.Dera J., 1995, Underwater irradiance as a factor affecting primary production, Diss. and Monogr., Inst. Oceanol. PAS, Sopot, 7, 110 pp.
18.Dera J., 2003, Marine physics, 2nd edn., PWN, Warsaw, 541 pp., (in Polish).
19.Dera J., 2010, The SatBałtyk project: Satellite Monitoring of the Baltic Sea Environment, Oceanologia, 52 (2), 319-324.
20.Dera J., Gohs L., Hapter R., KaiserW., Prandke H., Rting W., Woźniak B., 1974a, Untersuchungen zur Wechselwirkung zwischen den optischen, physikalischen, biologischen und chemischen Umweltfaktoren in der Ostsee, Geod. Geophys. Verőff., 4 (13), 5-100.
21.Dera J., Gohs L., Woźniak B., 1978, Experimental study of the composite parts of the light-beam attenuation process in waters of the Gulf of Gdańsk, Oceanologia, 10, 5-26.
22.Dera J., Gordon H.R., 1968, Light field fluctuation in the photic zone, Limnol. Oceanogr., 13 (4), 697-699.
23.Dera J., Hapter R., Krężel A., Wensierski W., Woźniak B., 1984, Solar radiation energy in the Baltic Sea - summary report, Proc. 15th Conf. Baltic Oceanographers, PAS, Gdynia, 124-142.
24.Dera J., Hapter R., Malewicz B., 1974b, Fluctuation of light in the euphotic zone and its influence on primary production of organic matter, Merentutkimuslait. Julk./Havsforskningsinst. Skr. 239, 58-66.
25.Dera J., Olszewski J., 1967, On the natural irradiance fluctuation affecting photosynthesis in the sea, Acta Geophys. Pol., 15, 351-364.
26.Dera J., Olszewski J., 1978, Experimental study of the short-period irradiance fluctuation under an undulated sea surface, Oceanologia, 10, 27-49.
27.Dera J., Rozwadowska A., 1991, Solar radiation variability over the Baltic Sea due to weather conditions, Oceanologia, 30, 5-36.
28.Dera J., Sagan S., 1990, A study of the Baltic water optical transparency, Oceanologia, 28, 77-102.
29.Dera J., Sagan S., Stramski D., 1993, Focusing of sunlight by sea surface waves: new results from the Black Sea, Oceanologia, 34, 13-25.
30.Dera J., Stramski D., 1986, Maximum effects of sunlight focusing under a wind disturbed sea surface, Oceanologia, 23, 15-42.
31.Ediger D., Raine R., Weeks A.R., Robinson I. S., Sagan S., 2001, Pigment signatures reveal temporal and regional differences in taxonomic phytoplankton composition off the west coast of Ireland, J. Plankton Res., 23 (8), 893-902.
32.Ficek D., Kaczmarek S., Stoń-Egiert J.,Woźniak B., Majchrowski R., Dera J., 2004, Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data, Oceanologia, 46 (4), 533-555.
33.Goff J.A., 1965, Saturation pressure of water on the New Kelvin Scale, Proc. Symp. Humidity and Moisture, Reinhold, New York.
34.Gohs L., Dera J., Gędziorowska D., Hapter R., Jonasz M., Prandke H., Siegel H., Schenkel G., Olszewski J., Woźniak B., Zalewski S.M., 1978, Untersuchengen zur Wechselwirkung zwischen den optischen, physikalischen, biologischen und chemischen Umweltfaktoren in der Ostsee aus den Jahren 1974, 1975 und 1976, Geod. Geophys. Verőff., 4 (25), 3-176.
35.Gueymard C.A., 2004, The sun's total and spectral irradiance for solar energy applications and solar radiation models, Sol. Energy, 76 (4), 423-453.
36.Hapter R., Wensierski W., Dera J., 1973, Natural irradiance in the euphotic zone of the Baltic [Naturalne oświetlenie strefy eufotycznej Bałtyku], Stud. i Mater. Oceanol., 7, 3-48, (in Polish).
37.Harder J.W., Thuillier G., Richard E.C., Brown S.W., Lykke K.R., Snow M., McClintock W.E., Fontenla J.M., Woods T.N., Pilewskie P., 2010, The SORCE SIM solar spectrum: comparison with recent observations, Sol. Phys., 263 (1-2), 3-24, doi:10.1007/s11207-010-9555-y.
38.Håkanson L., Eckhéll J., 2005, Suspended particulate matter (SPM) in the Baltic Sea - New empirical data and models, Ecol. Model., 189 (1-2), 130-150.
39.Højerslev N.K., 1986, Optical properties of sea water, [in:] Landolt-Bornstein numerical data and functional relationships in science and technology, Oceanogr. New Ser. 3, Springer-Verlag, Berlin, 386-462.
40.Isemer H. J., 1998, Sea ice concentration at the Baltic Proper - a digital 1 data set for 1964 to 1995, Proc. Second Stud. Conf. BALTEX, Juliusruh, Island of Rügen, Germany, 25-29 May 1998, Int. BALTEX Sec. Publ. Ser. 11, 78-79.
41.Isemer H. J., Rozwadowska A., 1999, Solar radiation fluxes at the surface of the Baltic Proper. Part 2. Uncertainities and comparison with simple bulk parametrisation, Oceanologia, 41 (2), 147-185.
42.Jegorov B.N., Kirillova T.V., 1973, Total radiation over the ocean in cloudless sky, Trudy GGO, 297, 87-98, (in Russian).
43.Jerlov N.G., 1976, Marine optics, Elsevier, Amsterdam, 231 pp.
44.Jerlov N.G., 1978, The optical classification of sea water in the euphotic zone, Inst. Fys. Oceanogr., Københavns Univ., Rep. No. 36.
45.Jin Z.H., Charlock T.P., Rutledge K., Stamnes K., Wang Y. J., 2006, Analytical solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface, Appl. Optics, 45 (28), 7443-7455.
46.Kaczmarek S., Dera J., 1998, Radiation flux balance of the sea-atmosphere system over the southern Baltic Sea, Oceanologia, 40 (4), 277-306.
47.Kaczmarek S., Woźniak B., 1995, The application of the optical classification of waters in the Baltic Sea (Case 2 waters), Oceanologia, 37 (2), 285-297.
48.Kastrov V.G., 1956, Solar radiation in the troposphere in the case of absolutely clear and dry air, Trudy CAO, 16, 26 pp., (in Russian).
49.Koblentz-Mishke O. I., Woźniak B., Ochakovskiy Yu. E., (eds.), 1985, Usvoenie solnechnoi energii v processe fotosinteza chernomorskogo i baltiiskogo fitoplanktona [Utilisation of solar energy in the photosynthesis of the Black and Baltic Sea phytoplankton], Inst. Okeanol., AN SSSR, Moskva, 336 pp., (in Russian).
50.Kowalczuk P., 1999, Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea, J. Geophys. Res., 104 (30), 30 047-30 058.
51.Kowalczuk P., Kaczmarek S., 1996, Analysis of temporal and spatial variability of yellow substance absorption in the southern Baltic, Oceanologia, 38 (1), 3-32.
52.Kowalczuk P., Olszewski J., 2002, The absorption of yellow substance in the Baltic Sea, Oceanologia, 44 (2), 287-288.
53.Kowalczuk P., Olszewski J., Darecki M., Kaczmarek S., 2005, Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters, Int. J. Remote Sens., 26 (2), 345-370.
54.Kowalczuk P., Sagan S., Olszewski J., Darecki M., Hapter R., 1999, Seasonal changes in selected optical parameters in the Pomeranian Bay in 1996-1997, Oceanologia, 41 (3), 309-334.
55.Kowalczuk P., Stedmon C.A., Markager S., 2006, Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll, Mar. Chem., 101 (1-2), 1-11.
56.Krężel A., 1982, Analiza rzeczywistego dopływu energii promieniowania słonecznego do powierzchni Morza Bałtyckiego [Analysis of the real solar radiation energy input to the Baltic sea surface], Ph.D. thesis, Gdańsk Univ., (in Polish).
57.Krężel A., 1985, Solar radiation at the Baltic Sea surface, Oceanologia, 21, 5-32.
58.Krężel A., 1997, A model of solar energy input to the sea surface, Oceanol. Stud., 26 (4), 21.
59.Krężel A., Kozłowski Ł., 2004, Cloud transmission retrieval over the Baltic with the use of METEOSAT data, XVII Ocean Optics Conf., Fremantle, Australia.
60.Krężel A., Kozłowski Ł., Paszkuta M., 2008, A simple model of light transmission through the atmosphere over the Baltic Sea utilizing satellite data, Oceanologia, 50 (2), 125-146.
61.Krężel A., Ostrowski M., Szymelfenig M., 2005, Sea surface temperature distribution during upwelling along the Polish Baltic Sea coast, Oceanologia, 47 (4), 415-432.
62.Lindau R., 2002, Energy and water balance of the Baltic Sea derived from merchant ship observations, Boreal Environ. Res., 7 (4), 417-424.
63.Liu K.-N., 1980, An introduction to atmospheric radiation, Acad. Press, New York-London-Toronto-Sydney-San Francisco, 392 pp.
64.Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics of marine phytoplankton, Rozpr. i monogr., 1, Pom. Akad. Pedagog., Słupsk, 131 pp., (in Polish).
65.Majchrowski R., Woźniak B., Dera J., Ficek D., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the 'in vivo' spectral absorption of algal pigments. Part 2. Practical applications of the model, Oceanologia, 42 (2), 191 -202.
66.Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics of marine phytoplankton, Rozpr. i monogr., 1, Pom. Akad. Pedagog., Słupsk, 131 pp., (in Polish).
67.McDonald J.E., 1960, Direct absorption of solar radiation by atmospheric water, J. Meteor., 17, 319-328.
68.Mecherikunnel A.T., 1998, Solar total irradiance: a reference value for solar minimum, Sol. Phys., 177 (1-2), 11-23.
69.Morel A., Antoine D., Babin M., Dandonneanu Y., 1996, Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program): the impact of natural variations in photosynthetic parameters on model predictive skill, Deep-Sea Res., 43 (8), 1273-1304.
70.Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709-722.
71.Olszewski J., 1973, Analiza warunkow widzialności podwodnej w morzu na przykładzie Zatoki Gdańskiej, Oceanologia, 2, 153-225.
72.Olszewski J., Darecki M., 1999, Derivation of remote sensing reflectance of Baltic waters from above-surface measurements, Oceanologia, 41 (1), 1-13.
73.Olszewski J., Sagan S., Darecki M., 1992, Spatial and temporal changes of some optical parameters in the Southern Baltic, Oceanologia, 33, 87-103.
74.Omstedt A., Nohr Ch., 2004, Calculation of the water and heat budgets of the Baltic Sea using ocean modelling and available meteorological, hydrological and ocean data, Tellus A, 56 (4), 400-414.
75.OstrowskaM., 2001, The application of fluorescence methods to the study of marine photosynthesis, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 15, 194 pp., (in Polish).
76.Ostrowska M., Majchrowski R., Stoń-Egiert J., Woźniak B., Dera J., 2007, Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 1: Total chlorophyll a distribution, Oceanologia, 49 (4), 471-489.
77.Ota Y., Higurashi A., Nakajima T., Yokota T., 2010, Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system, J. Quant. Spectrosc. Ra., 111 (6), 878-894.
78.Otremba Z., 2004, Modeling the bidirectional reflectance distribution functions (BRDF) of sea areas polluted by oil, Oceanologia, 46 (4), 505-518.
79.Otremba Z., Król T., 2002, Modeling of the crude oil suspension impact on inherent optical properties of coastal seawater, Pol. J. Environ. Stud., 11 (4), 407-411.
80.Otremba Z., Piskozub J., 2001, Modelling of the optical contrast of an oil film on a sea surface, Opt. Express, 9 (8), 411-416.
81.Payne R.E., 1972, Albedo of the sea surface, J. Atmos. Sci., 29 (5), 959-970. Platt U., Pfeilsticker K., Vollmer M., 2007, Radiation and optics in the atmosphere, 1165-1203, [in]: Handbook of lasers and optics, F. Träger (ed.), Springer, New York, 1358 pp.
82.Podstawczyńska A., 2010, UV and global solar radiation in Łodź, Central Poland, Int. J. Climatol., 30 (1), 1-10.
83.Pomeranec K. S., 1966, The Baltic Sea heat, Rep. PIHM, 1, 19-48, (in Polish).
84.Rozwadowska A., 1991, A model of solar energy input into the Baltic Sea, Stud. i Mater. Oceanol., 59 (6), 223-242.
85.Rozwadowska A., 1992, Variability of solar radiation energy inflow to the southern Baltic, Doctoral diss., Inst. Oceanol. PAS, Sopot, 128 pp., (in Polish).
86.Rozwadowska A., 1994, Long-period variability of solar radiation over the South Baltic, Vol. 1, Proc. 19th Conf. Baltic Oceanographers, Sopot, 149-157.
87.Rozwadowska A., 1996, Influence of clouds on the broadband spectral irradiance at the Baltic surface, Oceanologia, 38 (3), 297-315.
88.Rozwadowska A., 2004, Optical thickness of stratiform clouds over the Baltic inferred from on-board irradiance measurements, Atmos. Res., 72 (1-4), 129-147.
89.Rozwadowska A., Isemer H. J., 1998, Solar radiation fluxes at the surface of the Baltic Proper. Part 1. Mean annual cycle and influencing factors, Oceanologia, 40 (4), 307-330.
90.Ruddick K.G., Ovidio F., Rijkeboer M., 2000, Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Appl. Optics, 39 (6), 897-912.
91.Russak V., 1994, Is the radiation climate in the Baltic Sea region changing?, Ambio, 23 (2), 160-163.
92.Sagan S., 1991, Light transmission in the waters of the Southern Baltic, Diss. And Monogr., Inst. Oceanol. PAS, Sopot, 2, 149 pp., (in Polish).
93.Sagan S., 2008, The inherent water optical properties of Baltic waters, Diss. And Monogr., Inst. Oceanol. PAS, Sopot, 21, 244 pp., (in Polish).
94.Sagan S., Dera J., 1994, Baltic patchiness in terms of optical properties, ICES Coop. Res. Rep. No. 201, 109-115.
95.Sagan S., Olszewski J., Darecki M., 1992, Spatial and temporal changes of some optical parameters in the Southern Baltic, Oceanologia, 33, 1-16.
96.Schatten K.H., Orosz J.A., 1990, Solar constant secular changes, Sol. Phys., 125 (1), 179-184.
97.Siegel H., Gerth M., Ohde T., Heene T., 2005, Ocean colour remote sensing relevant water constituents and optical properties of the Baltic Sea, Int. J. Remote Sens., 26 (2), 315-334.
98.Snyder R. L., Dera J., 1970, Wave-induced lightfield fluctuation in the sea, J. Opt. Soc. Am., 60 (8), 1072-1079.
99.Spencer J.W., 1971, Fourier series representation of the position of the Sun, Search, 2 (5), 172 pp.
100.Steemann Nielsen E., 1975, Marine photosynthesis with special emphasis on the ecological aspect, Elsevier, Amsterdam, 141 pp.
101.Stramski D., 1986, Fluctuations of solar irradiance induced by surface waves in the Baltic, Bull. PAS Earth Sci., 34, 333-344.
102.Stramski D., Dera J., 1988, On the mechanism for producing flashing light under a wind-disturbed water surface, Oceanologia, 25, 5-22.
103.Tanaka T., Wang M.H., 2004, Solution of radiative transfer in anisotropic plane-parallel atmosphere, J. Quant. Spectrosc. Ra., 83 (3-4), 555-577.
104.Thomas G.E., Stamnes K., 1999, Radiative transfer in the atmosphere and ocean, Cambridge Univ. Press, Cambridge, 546 pp.
105.Thuillier G., Hersé M., Simon P.C., Labs D., Mandel H., Gillotay D., Foujols T., 2003, The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions, Sol. Phys., 214 (1), 1-22.
106.Timofeyev N.A., 1983, Radiation regime of the oceans, Nauk. Dumka, Kiyev, 247 pp., (in Russian).
107.Warneck P., 1988, Chemistry of the natural atmosphere, Acad. Press, London, 757 pp.
108.Willson R.C., 1993, Solar irradiance, [in:] Atlas of satellite observations related to global change, R. J. Gurey, J. L. Foster & C. L. Parkinson (eds.), Cambridge Univ. Press, Cambridge, 5-18.
109.Woods T.N., Chamberlin P.C., Harder J.W., Hock R.A., Snow M., Eparvier F.G., Fontenla J., McClintockW.E., Richard E.C., 2009, Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI), Geophys. Res. Lett., 36, L01101, doi:10.1029/2008GL036373.
110.Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 452 pp.
111.Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 1999, Modelling the influence of acclimation on the absorption properties of marine phytoplankton, Oceanologia, 41 (2), 187-210.
112.Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000a, Model of 'in vivo' spectral absorption of algal pigments, Ocean Optics XV Conf. [CD ROM], 1062, Off. Naval Res. Ocean, Atmos. Space S&T Dept., 11.
113.Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000b, Model of the 'in vivo' spectral absorption of algal pigments. Part 1. Mathematical apparatus, Oceanologia, 42 (2), 177-190.
114.Woźniak B., Dera J., Gohs L., 1977, Osłabianie i absorpcja światła w wodzie bałtyckiej, Stud. i Mater. Oceanol., 17, 25-30.
115.Woźniak B., Dera J., Koblentz-Mishke O. I., 1992a, Bio-optical relationships for estimating primary production in the ocean, Oceanologia, 33, 5-38.
116.Woźniak B., Dera J., Koblentz-Mishke O. I., 1992b, Modelling the relationship between primary production, optical properties, and nutrients in the sea, Ocean Optics 11, Proc. SPIE, 1750, 246-275.
117.Woźniak B., Hapter R., 1985, Statistical analysis of long-term solar radiation inflow and penetration in the euphotic zone of the southeren Baltic, [in:] Utilisation of solar energy in the photosynthesis process of the Black and Baltic Sea phytoplankton, O. I. Koblentz-Mishke, B. Woźniak & Yu. E. Ochakovskiy, (eds.), Inst. Okeanol., AN SSSR, Moskva, 176-204, (in Russian).
118.Woźniak B., Hapter R., Dera J., 1989, Light curves of marine plankton photosynthesis in the Baltic, Oceanologia, 27, 61-78.
119.Woźniak B., Krężel A., Darecki M., Woźniak S.B., Majchrowski R., Ostrowska M., Kozłowski Ł., Ficek D., Olszewski J., Dera J., 2008, Algorithm for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 1: Mathematical apparatus, Oceanologia, 50 (4), 451-508.
120.Woźniak B., Ostrowska M., 1991, Photosynthesis pigments: their individual optical (absorption and fluorescence) properties, Stud. i Mater. Oceanol., 59, 137-158.
121.Woźniak B., Rozwadowska A., Kaczmarek S., Woźniak S.B., Ostrowska M., 2003, Seasonal variability of the solar radiation flux and its utilisation in the Southern Baltic, ICES Coop. Res. Rep. No. 257, 280-298.
122.Woźniak B., Woźniak S.B., Tyszka K., Dera J., 2005a, Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater. Part 1. Model description, classification of organic particles, and example spectra of the light absorption coefficient and the imaginary part of the refractive index of particulate matter for phytoplankton cells and phytoplankton-like particles, Oceanologia, 47 (2), 129-164.
123.Woźniak B., Woźniak S.B., Tyszka K., Ostrowska M., Ficek D., Majchrowski R., Dera J., 2006, Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater. Part 3. Practical application, Oceanologia, 48 (4), 479-507.
124.Woźniak B., Woźniak S.B., Tyszka K., Ostrowska M., Majchrowski R., Ficek D., Dera J., 2005b, Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater. Part 2. Modelling results, Oceanologia, 47 (4), 621-662.
125.Woźniak S.B., 1996a, Sea surface slope distribution and foam coverage as functions of the mean height of wind waves, Oceanologia, 38 (3), 317-332.
126.Woźniak S.B, 1996b, Mathematical spectral model of solar irradiance reflectance and transmittance by a wind-ruffled sea surface. Part 1. The physical problem and mathematical apparatus, Oceanologia, 38 (4), 447-467.
127.Woźniak S.B, 1997, Mathematical spectral model of solar irradiance reflectance and transmittance by a wind-ruffled sea surface. Part 2. Modelling results and application, Oceanologia, 39 (1), 17-34.
128.Woźniak S.B., Zapadka T., Woźniak B., 2001, Comparison between various formulae for sea surface net infrared radiation flux and a new empirical formula for southern Baltic region, Proc. 3rd Stud. Conf. Baltex, 2-6 July, Åland, Finland, 257-258.
129.You Y., Stramski D., Darecki M., Kattawar G.W., 2010, Modeling of wave-induced irradiance fluctuations at near-surface depths in the ocean: a comparison with measurements, Appl. Optics, 49 (6), 1041-1053.
130.Zapadka T., Krężel A., Woźniak B., 2008, Longwave radiation budget at the Baltic Sea surface from satellite and atmospheric model data, Oceanologia, 50 (2), 147-166.
131.Zapadka T., Woźniak S.B., 2000, Preliminary comparison between various models of the long-wave radiation budget of the sea and experimental data from the Baltic Sea, Oceanologia, 42 (3), 359-369.
132.Zapadka T., Woźniak B., Dera J., 2007, A more accurate formula for calculating the net longwave radiation flux in the Baltic Sea, Oceanologia, 49 (4), 449-470.
133.Zapadka T., Woźniak S.B., Woźniak B., 2001, A simple formula for Baltic Sea surface net infrared radiation flux, Oceanologia, 43 (3), 265-277.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BUS8-0003-0019
BazTech ID BUS8-0003-0019