Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic features of successive upwelling events in the Baltic Sea - a numerical case study

Warianty tytułu
Języki publikacji
Coastal upwelling often reveals itself during the thermal stratification season as an abrupt sea surface temperature (SST) drop. Its intensity depends not only on the magnitude of an upwelling-favourable wind impulse but also on the temperature stratification of the water column during the initial stage of the event. When a "chain" of upwelling events is taking place, one event may play a part in forming the initial stratification for the next one; consequently, SST may drop significantly even with a reduced wind impulse. Two upwelling events were simulated on the Polish coast in August 1996 using a three-dimensional, baroclinic prognostic model. The model results proved to be in good agreement with in situ observations and satellite data. Comparison of the simulated upwelling events show that the first one required a wind impulse of 28000 kg m-1 s-1 to reach its mature, full form, whereas an impulse of only 7500 kg m-1 s-1 was sufficient to bring about a significant drop in SST at the end of the second event. In practical applications like operational modelling, the initial stratification conditions prior to an upwelling event should be described with care in order to be able to simulate the coming event with very good accuracy.
Słowa kluczowe
Opis fizyczny
bibliogr. 35 poz., wykr.
  • 1.Andrejev O., Myrberg K., Alenius P., Lundberg P.A., 2004a, Mean circulation and water exchange in the Gulf of Finland - a study based on three-dimensional modeling, Boreal Environ. Res., 9 (1), 1-16.
  • 2.Andrejev O., Myrberg K., Lundberg P.A., 2004b, Age and renewal time of water masses in a semi-enclosed basin - application to the Gulf of Finland, Tellus A, 56 (5), 548-558.
  • 3.Andrejev O., Myrberg K., Mälkki P., Perttilä M., 2002, Three-dimensional modelling of the main Baltic inflow in 1993, Environ. Chem. Phys., 24 (3), 156-161.
  • 4.Andrejev O., Sokolov A., 1989, Numerical modelling of the water dynamics and passive pollutant transport in the Neva inlet, Meteorol. Hydrol., 12, 75-85, (in Russian).
  • 5.Andrejev O., Sokolov A., 1990, 3D baroclinic hydrodynamic model and its applications to Skagerrak circulation modelling, Proc. 17th Conf. Baltic Oceanogr., Norrköping, 38-46.
  • 6.Bergström S., Carlsson B., 1994, River runoff to the Baltic Sea: 1950-1990, Ambio, 23 (4-5), 280-287.
  • 7.Bumke K., Hasse L., 1989, An analysis scheme for determination of true surface winds at sea from ship synoptic wind and pressure observations, Bound.-Lay. Meteorol., 47 (1-4), 295-308.
  • 8.Bunker A. F., 1976, Computations of surface energy flux and annual air-sea interaction cycle of the North Atlantic Ocean, Mon. Weather Rev., 104 (9), 1122-1140.
  • 9.Bychkova I., Viktorov S., 1987, Use of satellite data for identification and classification of upwelling in the Baltic Sea, Oceanology, 27 (2), 158-162.
  • 10.Csanady G.T., 1977, Intermittent 'full' upwelling in Lake Ontario, J. Geophys. Res., 82 (C3), 397-419.
  • 11.Cushman-Roisin B., 1994, Introduction to geophysical fluid dynamics, Prentice-Hall, Englewood Cliffs, N. J., 320 pp.
  • 12.Dietrich G. (ed.), 1972, Upwelling in the ocean and its consequences, Geoforum Oxford 11, Elsevier Sci./Pergamon, Frankfurt.
  • 13.Fennel W., Seifert T., Kayser B., 1991, Rossby radii and phase speeds in the Baltic Sea, Cont. Shelf Res., 11 (1), 23-36.
  • 14.Flament P., Armi L., Washburn L., 1985, The evolving structure of an upwelling filament, J. Geophys. Res., 90 (C6), 11 765-11 778.
  • 15.Haapala J., 1994, Upwelling and its influence on nutrient concentration in the coastal area of the Hanko Peninsula, entrance of the Gulf of Finland, Estuar. Coast. Shelf Sci., 38 (5), 507-521.
  • 16.Kochergin V.P., 1987, Three-dimensional prognostic models, [in:] Three-dimensional coastal ocean models, N. S. Heaps (ed.), Am. Geophys. Union, Coast. Estuar. Sci. Ser., 4, 201-208.
  • 17.Kowalewski M., Ostrowski M., 2005, Coastal up- and downwelling in the southern Baltic, Oceanologia, 47 (4), 435-475.
  • 18.Krężel A., Ostrowski M., Szymelfenig M., 2005, Sea surface temperature distribution during upwelling along the Polish Baltic coast, Oceanologia, 47 (4), 415-432.
  • 19.Laanemets J., Zhurbas V., Elken J., Vahtera E., 2009, Dependence of upwelling-mediated nutrient transport on wind forcing, bottom topography and stratification in the Gulf of Finland: model experiments, Boreal Environ. Res., 14 (1), 213-225.
  • 20.Lehmann A., Myrberg K., 2008, Upwelling in the Baltic Sea - a review, J. Marine Syst., 74 (Suppl. 1), S3-S12.
  • 21.Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer Verl., Berlin-Heidelberg-New York, 378 pp.
  • 22.Malicki J., Wielbińska D., 1992, Some aspects of the atmosphere's impact on the Baltic Sea waters, Bull. Sea Fish. Inst., 1 (125), 19-28.
  • 23.Matciak M., Urbański J., Piekarek-Jankowska H., Szymelfenig M., 2001, Presumable groundwater seepage influence on the upwelling events along the Hel Peninsula, Oceanol. Stud., 30 (3-4), 125-132.
  • 24.Mutzke A., 1998, Open boundary condition in the GFDL-model with free surface, Ocean Model., 116, 2-6.
  • 25.Myrberg K., Andrejev O., 2003, Main upwelling regions in the Baltic Sea: a statistical analysis based on three-dimensional modelling, Boreal Environ. Res., 8 (2), 97-112.
  • 26.Myrberg K., Andrejev O., 2006, Modelling of the circulation, water exchange and water age properties of the Gulf of Bothnia, Oceanologia, 48 (S), 55-74.
  • 27.Myrberg K., Lehmann A., Raudsepp U., Szymelfenig M., Lips I., Lips U., Matciak M., Kowalewski M., Krężel A., Burska D., Szymanek L., Ameryk A., Bielecka L., Bradtke K., Gałkowska A., Gromisz S., Jędrasik J., Kaluźny M., Kozłowski L., Krajewska-Sołtys A., Ołdakowski B., OstrowskiM., Zalewski M., Andrejev O., Suomi I., Zhurbas V., Kauppinen O.-K., Soosaar E., Laanemets J., Uiboupin R., Talpsepp L., Golenko M., Golenko N., Vahtera E., 2008, Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Science Congress at Rostock University, Germany, 19-22 March 2007, Oceanologia, 50 (1), 95-113.
  • 28.Myrberg K., Ryabchenko V., Isaev A., Vankevich R., Andrejev O., Bendtsen J., Erichsen A., Funkquist L., Inkala A., Neelov I., Rasmus K., Rodriguez Medina M., Raudsepp U., Passenko J., Söderkvist J., Sokolov A., Kuosa H., Anderson T.R., Lehmann A., Skogen M.D., 2010, Validation of three-dimensional hydrodynamic models of the Gulf of Finland based on a statistical analysis of a six-model ensemble, Boreal Environ. Res., (in press).
  • 29.Niiler P., Kraus E., 1977, One-dimensional models of the upper ocean, [in:] Modelling and prediction of the upper layers of the ocean, E. Kraus (ed.), Pergamon Press, Oxford, 143-172.
  • 30.Orlanski I., 1976, A simple boundary condition for unbounded hyperbolic flows, J. Comp. Phys., 21, 251-269.
  • 31.Proudman J., 1953, Dynamical oceanography, Methuen & Co., London, 409 pp.
  • 32.Seifert T., Kayser B., 1995, A high resolution spherical grid topography of the Baltic Sea, Meereswiss. Ber./Mar. Sci. Rep., Inst. Ostseeforsch., Warnemünde.
  • 33.Smagorinsky J., 1963, General circulation experiments with the primitive equations. Part I: The basic experiment, Mon. Weather Rev., 91 (3), 99-164.
  • 34.Sokolov A., Andrejev O., Wulff F., Rodriguez Medina M., 1997, The data assimilation system for data analysis in the Baltic Sea, Syst. Ecol. Contrib., (Stockholm Univ.), 3, 66 pp.
  • 35.Zhurbas V.M., Laanemets J., Vahtera E., 2008, Modeling of the mesoscale structure of coupled upwelling/downwelling events and related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea, J. Geophys. Res., 113, C05004, doi:10.1029/2007JC004280.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.