Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button


Wiadomości Chemiczne

Tytuł artykułu

Zastosowanie biotransformacji w syntezie optycznie czynnych laktonów

Autorzy Gładkowski, W. 
Treść / Zawartość
Warianty tytułu
EN An application of biotransformation in the synthesis of optically active lactones
Języki publikacji PL
EN Compounds with lactone moiety exhibit many biological acitivities (for example antimicrobial, antifeedant, cytostatic). One of the most attractive methods to obtain optically active lactones are regio- and stereoselective biotransformations. These together with mild reaction conditions are the main advantages of the processes compared to chemical synthesis of lactones. In this review examples of such biotransformations are presented. The lactones may be obtained via direct biotransformation of substrate or in chemoenzymatic synthesis. In the second case the enzymatic step is the key one, leading to optically pure or enriched intermediate which is further transformed into desired, optically active product. As the products of direct biotransformation, lactones can be formed from fatty acids like ricinoleic or vernolic acid [1, 2], aromatic compounds (benzoic acid, mandelic acid, catechol) [3] as well as in the result of lactonization of epoxyesters by enzymatic systems of fungi or plants. In the last case the biocalysts is the apple pulp or Jerusalem artichoke pulp [4-6]. Hydrolysis of amides and nitriles is also applied to the synthesis of lactones. Especially useful in this regard are microorganisms, which exhibit both enzymatic activities [7-9]. Microbial reduction of carbonyl group in ketoesters or ketoacids is also very useful method. The reduction may occur in ? or ? position, leading to ?- or ?-hydroxyacids which cyclize to the corresponding lactones [10-13]. Reduction of carbonyl group in ?-position is the first step of a synthesis of lactones with 7- or 8-membered rings [14-16]. The application of hydrolysis or transesterification processes catalyzed by hydrolytic enzymes, mainly lipases from Pseudomonas sp., also leads to enzymatically enriched lactones. The substrates may be ?-ketoesters, ?-hydroxyamides, meso-diols or meso-diesters [10, 17-19]. Among the oxidation reaction the most known is Baeyer-Villiger reaction in which cyclic ketones are directly oxidized to the lactones by enzymes called Baeyer-Villiger monooxygenases (BVMO) [20]. The reaction is highly regioselective and can be applied to the production of unsaturated lactones [23]. In this area of research genetically modified strains of Escherichia coli are applied [21, 24], although the wild strains are also used, for example to the production of ?-caprolactone from cyclohexanone [22]. Another reaction catalyzed by oxidoreductases is the oxidation of hydroxyl group to carbonyl or carboxyl one [25-27]. In this first case horse liver alcohol dehydrogenase (HLADH) found application in the oxidation of meso-diols to lactones. The ability of different fungal strains to the regioselective hydroxylation of unactivated carbon atom found an application to the synthesis of lactones with eudesmane and germacrane systems [28-30]. Resolution of racemates is an alternative strategy used to the synthesis of lactones in optically pure forms. This aim can be achieved by enzymatic cleavage of lactone ring catalyzed by lactonases. These enzymes of microbial origin belong to esterases and are often induced during the growth of microorganisms on cyclic ketones as the carbon sources [31, 32, 34]. Enzymatic resolution of pantolactone by lactonase from Fusarium oxysporum is an example of industrial biotransformation [33]. Lipases can also be applied to the enantioselective hydrolysis of lactone ring [35-37]. The other functional groups present in the molecule can also be converted during the resolution of racemic lactones [39-44]. The examples are hydrolysis of acetoxylactones or esterification of hydroxylactones.
Słowa kluczowe
PL laktony   biotransformacja   lipazy   laktonazy   laktonizacja   hydroliza laktonów   transestryfikacja   redukcja   utlenianie  
EN lactones   biotransformations   lipases   lactonases   lactonization   hydrolysis   transesterification   reduction   oxidation  
Wydawca Polskie Towarzystwo Chemiczne
Czasopismo Wiadomości Chemiczne, ISSN 0043-5104
Rocznik 2009
Tom [Z] 63, 5-6
Strony 361--389
Opis fizyczny bibliogr. 43 poz., wykr.
autor Gładkowski, W.
  • Wydział Nauk o Żywności, Uniwersytet Przyrodniczy, ul. Norwida 25, 50-375 Wrocław,
[1] Y. Wache, M. Aguedo, J.M. Nicaud, J.M. Berlin, Appl. Microbiol. Biot., 2003, 61, 393.
[2] W. Albrecht, R. Tressl, Tetrahedron: Asymmetry, 1993, 4, 1391.
[3] D.W. Ribbons, A.G. Sutherland, Tetrahedron, 1994, 50, 3587.
[4] T. Olejniczak, M. Grabarczyk, C. Wawrzeńczyk, J. Mol. Catal. B: Enzym., 2001, 11, 243.
[5] T. Olejniczak, J. Gawroński, C. Wawrzeńczyk, Chirality, 2001, 13, 302-307.
[6] T. Olejniczak, A. Mironowicz, C. Wawrzeńczyk, Bioorg. Chem., 2003, 31, 199.
[7] S.K. Taylor, C.R. Arnold, A.T. Gerds, N.D. Ide, K.M. Law, D.L. Kling, M.G. Pridgeon, L.J. Simons, J.R. Vyvyan, J.S. Yamaoka, M.-K. Liao, T.E. Goyne, Tetrahedron: Asymmetry, 2004, 15, 3819.
[8] M..X. Wang, S.M. Zhao, Tetrahedron: Asymmetry, 2002, 13, 1695.
[9] S.M. Maddrell, N.J. Turner, A. Kerridge, A.J. Willetts, J. Crosby, Tetrahedron Lett., 1996, 37, 6001.
[10] F. Benedetti, C. Forzato, P. Nitti, G. Pitacco, E. Valentin, M. Vicario, Tetrahedron: Asymmetry, 2001, 12, 505.
[11] C. Forzato, R. Gandolfi, F. Molinari, P. Nitti, G. Pitacco, E. Valentin, Tetrahedron: Asymmetry, 2001, 12, 1039.
[12] C. Forzato, P. Nitti, G. Pitacco, E. Valentin, Tetrahedron: Asymmetry, 1999, 10, 1243.
[13] S.K. Taylor, R.F. Atkinson, E.P. Almli, M.D. Carr, T.J. van Huis, M.R. Whittaker, Tetrahedron: Asymmetry, 1995, 6, 157.
[14] D. Buisson, R. Azerad, Tetrahedron: Asymmetry, 1996, 7, 9.
[15] S. Danchet, D. Buisson, R. Azerad, J. Mol. Catal. B: Enzym., 1998, 5, 255.
[16] N.W. Fadnavis, S.K. Vadivel, M. Sharfuddin, Tetrahedron: Asymmetry, 1999, 10, 3675.
[17] A.B.L. Runmo, O. Pamies, K. Faber, J.E. Backvall, Tetrahedron Lett., 2002, 43, 2983.
[18] Y. Caro, C.F. Masaguer, E. Ravina, Tetrahedron: Asymmetry, 2001, 12, 1723.
[19] C. Pichon, C. Hubert, C. Alexandre, F. Huet, Tetrahedron: Asymmetry, 2000, 11, 2429.
[20] A. Willetts, Tibtech., 1997, 15, 55.
[21] S.D. Doig, H. Simpson, V. Alphand, R. Furstoss, J.M. Woodley, Enzyme Microb. Tech., 2003, 32, 347.
[22] D. Mandal, A. Ahmad, M.I. Khan, R. Kumar, J. Mol. Catal. A: Chem., 2002, 181, 237.
[23] M.T. Bes, R. Villa, S.M. Roberts, P.W.H. Wan, A. Willetts, J. Mol. Catal. B: Enzym., 1996, 1, 127.
[24] M.D. Mihovilovic, P. Kapitan, Tetrahedron Lett., 2004, 45, 2751.
[25] A. Romano, R. Gandolfi, P. Nitti, M. Rollini, F. Molinari, J. Mol. Catal. B: Enzym., 2002, 17, 235.
[26] E. Schoffers, A. Gołębiowski, C.R. Johnson, Tetrahedron, 1996, 52, 3769.
[27] M.E. Gourdel-Martin, C. Comoy, F. Huet, Tetrahedron: Asymmetry, 1999, 10, 403.
[28] A. Garcia-Granados, A. Martinez, M.E. Onorato, F. Rivas, J.M. Arias, Tetrahedron, 1991, 47, 91.
[29] A. Garcia-Granados, A. Parra, Y. Simeo, Tetrahedron, 1998, 54, 14421.
[30] A. Garcia-Granados, M.C. Gutierrez, A. Martinez, F. Rivas, J.M. Arias, Tetrahedron, 1998, 54, 3311.
[31] O.A. Onakunle, C.J. Knowles, A.W. Bunch, Enzyme Microb. Tech., 1997, 21, 245.
[32] S. Shimizu, M. Kataoka, K. Honda, K. Sakamoto, J. Biotechnol., 2001, 92, 187.
[33] M. Kataoka, M. Hirakata, K. Sakamoto, H. Yamada, S. Shimizu, Enzyme Microb. Tech., 1996, 19, 307.
[34] P. Viazzo, V. Alphand, R. Furstoss, Tetrahedron Lett., 1996, 37, 4519.
[35] A.L. Gutman, K. Zuobi, E. Guibe-Jampel, Tetrahedron Lett., 1990, 31, 2037.
[36] M.M. Enzelberger, U.T. Bornscheuer, I. Gatfield, R.D. Schmid, J. Biotechnol., 1997, 56, 129.
[37] B.-Y. Hwang, H. Scheib, J. Pleiss, B.-G. Kim, R.D. Schmid, J. Mol. Catal. B: Enzym., 2000, 10, 223.
[38] S. Drioli, F. Felluga, C. Forzato, P. Nitti, G. Pitacco, E. Valentin, J. Mol. Catal. B: Enzym., 1997, 3, 203.
[39] T. Olejniczak, Z. Ciunik, Tetrahedron: Asymmetry, 2004, 15, 3743.
[40] T. Olejniczak, M. Grabarczyk, J. Nawrot, C. Wawrzeńczyk:, Biotech., 2000, 3, 106.
[41] G. Zanoni, F. Agnelli, A. Meriggi, G. Vidari, Tetrahedron: Asymmetry, 2001, 12, 1779.
[42] A. Kamal, M. Sandbhor, A.A. Shaik, 2003, 14, 1575.
[43] K. Mizuno, S. Sakuda, T. Nihira, Y. Yamada, Tetrahedron, 1994, 50, 10849.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BUS5-0017-0051
BazTech ID BUS5-0017-0051