Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Angström coefficient as an indicator of the atmospheric aerosol type for a well-mixed atmospheric boundary layer: Part 1: Model development

Warianty tytułu
Języki publikacji
The physical and optical properties of an atmospheric aerosol mixture depend on a number of factors. The relative humidity influences the size of hydroscopic particles and the effective radius of an aerosol mixture. In consequence, values of the aerosol extinction, the aerosol optical thickness and the Ängström coefficient are modified. A similar effect is observed when the aerosol composition changes. A higher content of small aerosol particles causes the effective radius of an aerosol mixture to decrease and the Ängström coefficient to increase. Both effects are analysed in this paper. The parameters of the size distribution and the type of components used to represent natural atmospheric aerosol mixtures are based on experimental data. The main components are sea-salts (SSA), anthropogenic salts (WS, e.g. NH4HSO4, NH4NO3, (NH4)2 SO4), organic carbon (OC) and black carbon (BC). The aerosol optical thickness is modelled using the external mixing approach. The influence of relative humidity on the optical and physical properties of the following aerosol mixtures is investigated: (SSA & WS), (SSA & OC), (SSA & BC), (SSA, WS & OC) and (WS, OC & BC). It is demonstrated that the Ängström coefficient can be used as a rough indicator of the aerosol type.
Opis fizyczny
bibliogr. 33 poz., tab., wykr.
  • Ackerman T.P., Toon O.B., 1981, Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles, Appl. Opt., 20 (20), 3661-3668.
  • Angström A., 1929, On the atmospheric transmission of sun radiation and on dustin the air, Geogr. Ann., 11, 156-166.
  • Berner A., Sidla S., Galambos Z., Kruisz C., Hitzenberg R., ten Brink H.M., Kos G.P.A., 1996, Modal character of atmospheric black carbon size distributions, J. Geophys. Res., 101 (D14), 19559-19565.
  • Bohren C. F., Huffman D.R., 1983, Absorption and scattering of light by small particles, John Wiley, New York, 550 pp.
  • Chylek P., Ramaswamy V., Cheng R., Pinnick R.G, 1981, Optical properties and mass concentration of carbonaceous smokes, Appl. Opt., 20 (17), 2980-2984.
  • Gong S. L., Barrie L.A., Blanchet J.-P., 1997, Modeling sea-salt aerosols in the atmosphere 1. Model development, J. Geophys. Res., 102 (D3), 3805-3818.
  • Heintzenberg J., 1982, Size segregated measurements of particulate elemental carbon and aerosol light absorption at remote Arctic locations, Atmos. Environ., 16 (10), 2461-2469.
  • Hess M., Koepke P., Schultz I., 1998, Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteorol. Soc., 79 (5), 831-844.
  • IPCC - Intergovernmental Panel on Climate Change, 2007, The physical science basis, Contribution of Working Group I to the Fourth Assessment Report, (available at
  • Kanakidou M., Seinfeld J.H., Pandis S.N. et al., 2005, Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5 (4), 1053-1123.
  • Kuśmierczyk-Michulec J., van Eijk A.M. J., 2007, Angström coefficient as a tracer of the continental aerosols, Proc. SPIE, 6708-25, Atmospheric Optics: Models, Measurements, and Target-in the-Loop Propagation, 27-28 August 2007, San Diego, CA.
  • Kuśmierczyk-Michulec J., de Leeuw G., 2005, Aerosol optical thickness retrieval over land and water using Global Ozone Monitoring Experiment (GOME) data, J. Geophys. Res., 110, D10S05, doi:10.1029/2004JD004780.
  • Kuśmierczyk-Michulec J., de Leeuw G., Robles Gonzalez C., 2002, Empirical relationships between aerosol mass concentrations and °Angström parameter, Geophys. Res. Lett., 29 (7), 1145, doi:10.1029/2001GL014128.
  • Kuśmierczyk-Michulec J., Marks R., 2000, The influence of sea-salt aerosols on the atmospheric extinction over the Baltic and the North Seas, J. Aerosol Sci., 31 (11), 1299-1316.
  • Kuśmierczyk-Michulec J., Schulz M., Ruellan S., Krüger O., Plate E., Marks R., de Leeuw G., Cachier H., 2001, Aerosol composition and related optical properties in the marine boundary layer over the Baltic Sea, J. Aerosol Sci., 32 (8), 933-955.
  • McClatchey R.A., Bolle H.-J., Kondratyev K.Y., Joseph J.H., McCormick M.P., Raschke E., Pollack J.B., Spänkuch D., Mateer C., 1984, A preliminary cloudless standard atmosphere for radiation computation, Rep. Int. Radiat. Comm., Boulder, CO, 53 pp.
  • Mie G., 1908, Annales de Physic, 25, 377-445.
  • Olszewski J., Kuśmierczyk-Michulec J., Sokólski M., 1995, The method of continuous measurement of the diffusivity of the natural light field, Oceanologia, 37 (2), 299-310.
  • Orr Jr. C., Hurd F.K., Corbett W. J., 1958, Aerosol size and relative humidity, J. Colloid Sci., 13, 472-482.
  • Plate E., 2000, Variabilität der Zusammensetzung anorganischer Aerosole - insbesondere der reaktiven Stickstoffverbindungen - in küstennahen Gebieten der Nordsee und Ostsee, Ph.D. thesis, Univ. Hamburg, Germany.
  • Richardson C.B., Kurtz C.A., 1984, A novel isopiestic measurement of water activity in concentrated and supersaturated lithium halide solutions, J. Am. Chem. Soc., 106 (22), 6615-6618.
  • Richardson C.B., Spann J. F., 1984, Measurement of the water cycle in a levitated ammonium sulfate particle, J. Aerosol Sci., 15, 563-571.
  • Rullean S., 2000, Comparative study of carbonaceous aerosol in tropical, urban and arctic atmospheres: specificity of sources and atmospheric evolution, Ph.D. thesis, LSCE, CEA/CNRS, Gif-Sur-Yvette, Cedex, France, (in French).
  • Schulz M., Cachier H., Ebinghaus R., Ferm M., Hongisto M., Iverfeldt A., Jylha A., Krueger O., Kuśmierczyk-Michulec J., de Leeuw G., Marks R., Moermann M., Munthe J., Nadstazik A., Ruellan S., Petersen G., Plate E., Ulevicius V., Schneider B., Schmolke S., Sopauskiene D., 1999, Evolution of the aerosol composition in the BASYS network study and Lagrangian experiments in summer 1997 and winter 1998, J. Aerosol Sci., 30, Suppl. 1, 97-98.
  • Seinfeld J.H., Pandis S.N., 1998, Atmospheric chemistry and physics: from air pollution to climate change, John Wiley and Sons, New York, 1326 pp.
  • Shettle E.P., Fenn R.W., 1979, Models of aerosols of lower troposphere and the effect of humidity variations on their optical properties, AFCRL Tech. Rep. 79 0214, Air Force Cambridge Res. Lab., Hanscom Air Force Base, MA, 10 pp.
  • Sloane C. S., 1983, Optical properties of aerosols - comparison of measurements with model calculations, Atmos. Environ., 17 (2), 409-416.
  • Stier P., Feichter J., Kinne S., Kloster S., Vignati E., Wilson J., Ganzeveld L., Tegen I., Werner M., Balkanski Y., Schulz M., Boucher O., Minikin A., Petzold A., 2005, The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 5 (4), 1125-1156, [].
  • Tang I.N., 1976, Phase transformation and growth of aerosol particles composed of mixed salts, J. Aerosol Sci., 7, 361-371.
  • Tang I.N., 1996, Chemical and size effects of hygroscopic aerosols on light scattering coefficients, J. Geophys. Res., 101 (D14), 19245-19250.
  • Tang I.N., 1997, Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance, J. Geophys. Res., 102 (D2), 1883-1893.
  • Tang I.N., Munkelwitz H.R., 1984, An investigation of solute nucleation in levitated solution droplets, J. Colloid Interf. Sci., 98 (2), 430-438.
  • Tang I.N., Munkelwitz H.R., 1994, Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance, J. Geophys. Res., 99 (D9), 18801-18808.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.