Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 1: Total chlorophyll a distribution

Warianty tytułu
Języki publikacji
This article is the first in a series of three describing the modelling of the vertical different photosynthetic and photoprotecting phytoplankton pigments concentration distributions in the Baltic and their interrelations described by the so-called non-photosynthetic pigment factor. The model formulas yielded by this research are an integral part of the algorithms used in the remote sensing of the Baltic ecosystem. Algorithms of this kind have already been developed by our team from data relating mainly to oceanic Case 1 waters (WC1) and have produced good results for these waters. But their application to Baltic waters, i.e., Case 2 waters, was not so successful. On the basis of empirical data for the Baltic Sea, we therefore derived new mathematical expressions for the spatial distribution of Baltic phytoplankton pigments. They are discussed in this series of articles. This first article presents a statistical model for determining the total concentration of chlorophyll, a (i.e., the sum of chlorophylls a+pheo derived spectrophotometrically) at different depths in the Baltic Sea Ca(z) on the basis of its surface concentration Ca(0), which can be determined by remote sensing. This model accounts for the principal features of the vertical distributions of chlorophyll concentrations characteristic of the Baltic Sea. The model's precision was verified empirically: it was found suitable for application in the efficient monitoring of the Baltic Sea. The modified mathematical descriptions of the concentrations of accessory pigments (photosynthetic and photoprotecting) in Baltic phytoplankton and selected relationships between them are given in the other two articles in this series (Majchrowski et al. 2007, Woźniak et al. 2007b, both in this volume).
Opis fizyczny
bibliogr. 29 poz., tab., wykr.
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland;,
  • [1].Ficek D., 2001, Modelling the quantum yield of photosynthesis in various marine systems, Rozpr. monogr. 14, Inst. Oceanol. PAN, Sopot, 223 pp., (in Polish).
  • [2].Ficek D., Majchrowski R., OstrowskaM., Kaczmarek S., Woźniak B., Dera J., 2003, Practical applications of the multi-component marine photosynthesis model (MCM), Oceanologia, 45 (3), 395-423.
  • [3].Ficek D., Woźniak B., Majchrowski R., Ostrowska M., 2000, Influence of nonphotosynthetic pigments on the measured quantum yield of photosynthesis, Oceanologia, 42 (2), 231-242.
  • [4].Kameda T., Matsumura S., 1998, Chlorophyll biomass offS anriku, Northwestern Pacific, estimated by Ocean Color and Temperature Scanner (OCTS) and a vertical distribution model, J. Oceanogr., 54, 509-516.
  • [5].Lewis M.R., Cullen J. J., Platt T., 1983, Phytoplankton and thermal structure in the upper ocean: consequences of non-uniformity in the chlorophyll profile, J. Geophys. Res., 88 (C4), 2565-2570.
  • [6].Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics of marine phytoplankton, Rozpr. monogr. 1, Pom. Akad. Pedag., Słupsk, 131 pp., (in Polish).
  • [7].Majchrowski R., Ostrowska M., 1999, Modified relationships between the occurrence of photoprotecting carotenoids of phytoplankton and Potentially Destructive Radiation in the sea, Oceanologia, 41 (4), 589-599.
  • [8].Majchrowski R., Ostrowska M., 2000, Influence of photo- and chromatic acclimation on pigment composition in the sea, Oceanologia, 42 (2), 157-175.
  • [9].Majchrowski R., Stoń-Egiert J., Ostrowska M., Woźniak B., Ficek D., Dera J., Lednicka B., 2007, Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 2: Accessory pigment distribution, (this volume).
  • [10].Morel A., Berthon J. F., 1989, Surface pigments, algal biomass profiles and potential production of the euphotic layer: relationships re-investigated in view of remote sensing applications, Limnol. Oceanogr., 34 (8), 1545-1562.
  • [11].Ostrowska M., 2001, The application of fluorescence methods to the study of marine photosynthesis, Rozpr. monogr. 15, Inst. Oceanol. PAN, Sopot, 194 pp., (in Polish).
  • [12].Ostrowska M., Majchrowski R., Matorin D.N., Woźniak B., 2000a, Variability of the specific fluorescence of chlorophyll in the ocean. Part 1. Theory of classical "in situ" chlorophyll fluorometry, Oceanologia, 42 (2), 203-219.
  • [13].Ostrowska M., Matorin D.N., Ficek D., 2000b, Variability of the specific fluorescence of chlorophyll in the ocean. Part 2. Fluorometric method of chlorophyll a determination, Oceanologia, 42 (2), 221-229.
  • [14].Platt T., Sathyendranath S., Caverhill C.M., Lewis M.R., 1988, Ocean primary production and available light: further algorithms for remote sensing, Deep-Sea Res., 35 (6), 855-879.
  • [15].Richardson A. J., Pfaff M.C., Field J.G., Silulwane N. F., Shillington F.A., 2002, Identifying characteristic chlorophyll a profiles in the coastal domain using an artificial neural network, J. Plankton Res., 24 (12), 1289-1303.
  • [16].Ruddick K. G., Ovidio F., Rijkeboer M., 2000, Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Appl. Opt., 39 (6), 897-912.
  • [17].Sathyendranath S., Cota G., Stuart V., Maass H., Platt, T., 2001, Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches, Int. J. Remote Sens., 22 (2-3), 249-273.
  • [18].Sathyendranath S., Platt T., Cavarhill C.M., Warnock R. E., Lewis M.R., 1989, Remote sensing of oceanic primary production: computations using a spectral model, Deep-Sea Res., 36 (3), 431-453.
  • [19].Smith R.C., 1981, Remote sensing and depth distribution of ocean chlorophyll, Mar. Ecol. Prog. Ser., 5, 359-361.
  • [20].Stramska M., Stramski D., 2005, Effect of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean, Appl. Opt., 44 (9), 1735-1747.
  • [21].Strickland J.D.H., Parsons T.R., 1968, A practical handbook of seawater analysis. Pigment analysis, Bull. Fish. Res. Bd. Can., 167, 1-311.
  • [22].Uitz J., Claustre H., Morel A., Hooker S. B., 2006, Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll, J. Geophys. Res., 111 (C08005), 1-23.
  • [23].Woźniak B., Dera J., Ficek D., Majchrowski R., OstrowskaM., Kaczmarek S., 2003, Modelling light and photosynthesis in the marine environment, Oceanologia, 45 (2), 171-245.
  • [24].Woźniak B., Dera J., Koblentz-Mishke O. I., 1992a, Bio-optical relationships for estimating primary production in the Ocean, Oceanologia, 33, 5-38.
  • [25].Woźniak B., Dera J., Koblentz-Mishke O. I., 1992b, Modelling the relationship between primary production, optical properties, and nutrients in the sea, Ocean Optics XI, Proc. SPIE, 1750, 246-275.
  • [26].Woźniak B., Dera J., Semovski S., Hapter R., Ostrowska M., Kaczmarek S., 1995a, Algorithm for estimating primary production in the Baltic by remote sensing, Stud. Mater. Oceanol., 68, 91-123.
  • [27].Woźniak B., Ficek D., Ostrowska M., Majchrowski R., Dera J., 2007a, Quantum yield of photosynthesis in the Baltic: a new mathematical expression for remote sensing applications, (this volume).
  • [28].Woźniak B., Majchrowski R., Ostrowska M., Ficek D., Kunicka J., Dera J., 2007b, Remote sensing of vertical phytoplankton pigment distributions in the Baltic: new mathematical expressions. Part 3: Non-photosynthetic pigment absorption factor, (this volume).
  • [29].Woźniak B., Smekot-Wensierski W., Darecki M., 1995b, Semi-empirical modelling of backscattering and light reflection coefficients in WC1 seas, Stud. Mater. Oceanol., 68, 61-90.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.