Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accurate Gas Phase Basicities of Hydroxyl Radical Modified Purines Estimated by Advanced Quantum Chemistry Methods

Warianty tytułu
Języki publikacji
The gas phase basicities (GPB) of purines and their hydroxyl radical modified analogs were characterized by different methods and diverse basis sets. The macroscopic and microscopic protolytic properties of six derivatives were analyzed in details. Most of studied model purine analogs, namely 8-oxo-adenosine (AB), 8-oxo-guanosine (GA), xanthosine (GB) and fapy-guanosine (GC) have reduced basicities from 2.0 kcal/mol (AB) to 6.4 kcal/mol (GA) compared to non-modified model purine nucleosides. The fapy-adenosine (AC) and 2-OH-adenosine (AA) are characterized by higher basic character compared to non-modified adenosine. Besides, it is presented the detailed analysis of GPB in accuracies estimated by means of HF, MP2, B3LYP, G3MP2 and G3MP2B3 methods. The B3LYP/aug-cc-pvdz approach seems to be the most accurate among studied methods and precise enough for estimation of GPB. However, the microscopic protonation features are much more sensitive to applied method since the difference in energies between some tautomers are often less than 1 kcal/mol with method dependent succession. The correct sequence of neutral and cationic forms may be however obtained using one of the model composite chemistry approaches, e.g. G3MP2B3. In the cases where B3LYP/aug-cc-pvdz and G3MP2B3 methods lead to contradictory predictions of order of neutral or protonated tautomers the latter is suggested to be used in the interpretation of microscopic protonation properties. Nevertheless, if only macroscopic property is necessary the B3LYP/aug-cc-pvdz level is sufficient since it provides GPB values with 1.0 kcal/mol accuracy.
Opis fizyczny
Bibliogr. 37 poz., rys.
  • Department of Physical Chemistry, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950 Bydgoszcz, Poland,
  • 1.   Saenger W., Principles of Nucleic Acid Structure, Springer-Verlag, NY, 1984, p. 107.
  • 2.   Sinden R.R., DNA Structure and Function, Academic Press, San Diego, CA, (1994).
  • 3.   Hunter W.N., Brown T., Anand N.N. and Kennard O., Nature, 320, 553 (1986).
  • 4.   Lin J., Yu C., Peng S., Akiyama L, Li K., Lee L.K. and Le Breton P.R., J. Am. Chem. Soc., 102, 4627 (1980).
  • 5.   Brown R.D., Godfrey P.D., McNaughton D. and Pierlot A.P., Chem.Phys. Lett.y 156, 61 1989).
  • 6.   Plutzer Chr., Nir E., de Vries M.S. and Kleinermanns K., Phys. Chem. Chem. Phys., 3, 5466 (2001).
  • 7.   Chen X., Syrstad E.A., Nguyen M.T., Gerbaux P. and Turecek F., J. Phys. Chem. A, 108, 9283 (2004).
  • 8.   Marian Ch., Nolting D. and Weinkauf R., Phys. Chem. Chem. Phys., 7, 3306 (2005).
  • 9.   Christensen J.J., Rytting J.H. and Izatt R.M., Biochemistry, 9, 4907 (1970).
  • 10.  Podolyan Y, Gorb L. and Leszczyński J., J. Phys. Chem. A, 104, 7346 (2000).
  • 11.  Guerra C.F., Bickelhaupt F.M., Saha S. and Wang F., J. Phys. Chem. A, 110, 4012 (2006).
  • 12.  Russo N., Toscano M., Grand A. and Jolibois F., J. Comput. Chem., 19, 989 (1998).
  • 13.  Chandra A.K., Nguyen M.T., Uchimaru T. and Zeegers-Huyskens T., J. Phys. Chem. A, 103, 8853 (1999).
  • 14.  Turecek F. and Chen X., J. Am. Soc. Mass Spectrom., 16, 1713 (2005).
  • 15.  Major D.T., Laxer A. and Fischer B., J. Org. Chem., 67, 790 (2002).
  • 16.  Marian C.M., J. Phys. Chem. A, 111, 1545 (2007).
  • 17.  Christensen J.J., Rytting J.H. and Izatt R.M., J. Phys. Chem., 71, 2700 (1967).
  • 18. Piacenza M. and Grimme S., J. Comput. Chem., 25, 83 (2003).
  • 19.  Hanus M., Ryjacek F., Kabelac M., Kubar T., Bogdan T. V., Trygubenko S.A. and Hobza P., J. Am. Chem. Soc., 125, 7678 (2003).
  • 20.  Langer H. and Doltsinis N.L., J. Chem. Phys., 118, 5400 (2003).
  • 21.  Shukla M.K. and Leszczyński J., J. Phys. Chem. A, 109, 7775 (2005).
  • 22.  Choi M.Y. and Miller R.E., J. Am. Chem. Soc., 128, 7320 (2006).
  • 23.  Mons M., Dimicoli L, Piuzzi F., Tardivel B. and Elhanine M., J. Phys. Chem. A, 106, 5088 (2002).
  • 24.  Crews B., Abo-Riziq A., Grace L., Callahan M., Kabelac M., Hobza P. and de Vries M.S., Phys. Chem. Chem. Phys., 7, 3015 (2005).
  • 25.  Dizdaroglu M., Chemistry of free radical damage to DNA and nucleoproteins, in: Halliwell B. and Aruoma O.I. (eds): DNA and Free Radicals, Ellis Horwood, NY, 1993.
  • 26.  Evans M.D., Griffiths H.R. and Lunec J., Reactive oxygen species and their cytotoxic mechanisms, in: Mechanisms of Cell Toxicity (Chipman J.K., ed), JAJ Press Inc., London, 1997
  • 27.  Cooke M.S., Evans M.D., Dizdaroglu M. and Lunec J., FEBS J., 17, 1195 (2003).
  • 28.  Cysewski P., Z Phys. Chem., 219, 213 (2005).
  • 29.  Rogstad K.N., Jang Y.H., Sowers L.C. and Goddard III W.A., Chem. Res. Toxicol, 16, 1455 (2003).
  • 30.  Cysewski P., J. Mol. Struct. (TheoChem), 466, 59 (1999).
  • 31.  Cysewski P., Vidal-Madjar C., Jordan R. and Oliński R., J. Mol. Struct. (TheoChem), 397,167 (1997).
  • 32.  Cysewski R, Z. Phys. Chem., 11/12, 1027 (1998).
  • 33.  Cysewski R, Jeziorek D. and Oliński R., J. Mol. Struct. (TheoChem), 369, 93 (1996).
  • 34.  Cysewski P. and Jeziorek D., J. Mol Struct. (TheoChem), 430, 219 (1998).
  • 35.  Afeefy H.V., Liebman J.F. and Stein S.E., "Neutral Thermochemical Data", in: NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. Linstrom P.J., Mallard W.G., June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899 (
  • 36. Noggle J.H., Physical Chemistry, 3rd edn. Harper Collins, New York, 1996.
  • 37.  Jang Y.H., Goddard III W.A., Noyes K.T., Sowers L.C., Hwang S. and Chung D.S., Chem. Res. Toxicol, 15, 1023 (2002).
  • 38.  Cysewski R, Bednarek D. and Kozłowska K., Phys. Chem. Chem. Phys., 5, 4899 (2003).
  • 39. Cysewski R, Bira D. and Bialkowski K., J. Mol. Struct. (Theochem), 678, 77 (2004).
  • 40. Gaussian 03, Revision A.l, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven T. Jr., Kudin K.N., Burant J.C., Millam J.M., lyengar S.S., Tomasi J., Barone V, Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T, Honda Y, Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.R, Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala RY, Morokuma K., Voth G.A., Salvador R, Dannenberg J.J., Zakrzewski V. G.., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz R, Komaromi L, Martin R.L., Fox D.J., Keith T, Al-Laham M.A., Peng C.Y, Nanayakkara A., Challacombe M., Gili RM. W., Johnson B., Chen W., Wong M.W., Gonzalez C. and Pople J.A., Gaussian, Inc., Pittsburgh PA, 2003. 41. Scott A.R and Radom L., J. Phys. Chem., 100, 16502 (1996).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.