Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability analysis of linear continuous-time fractional systems of commensurate order

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper considers the stability problem of linear time-invariant continuous-time systems of fractional commensurate order. It is shown that the system is stable if and only if plot of rational function of fractional order, called as the generalised modified Mikhailov plot, and does not encircle the origin of the complex plane. The considerations are illustrated by numerical examples.
  • Professor at Białystok Technical University, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland,
  • [1] Busłowicz M.,Stability of linear time-invariant systems with uncertain parameters, Publishing Department of Technical University of Białystok, Białystok 1997 (in Polish).
  • [2] Busłowicz M., "Frequency domain method for stability analysis of linear continuous-time fractional systems". In: K. Malinowski, L. Rutkowski (Eds.): Recent Advances in Control and Automation, Academic Publishing House EXIT : Warsaw 2008, pp. 83-92.
  • [3] Busłowicz M., "Stability of linear continuous-time fractional systems of commensurate order",Pomiary Automatyka Robotyka, no. 2, 2008, 475-484 (on CD-ROM) (in Polish).
  • [4] Das. S, Fractional order systems and fractional order controllers, Springer, Berlin 2008.
  • [5] Ferreira N. M. F., Machado J. A. T., "Fractional-order hybrid control of robotic manipulators". In: Proc. of 11th Int. Conf. Advanced Robotics , ICAR'2003, Coimbra 2003, Portugal, 393-398.
  • [6] Gałkowski K., Bachelier O., Kummert A., "Fractional polynomial and nD systems a continuous case. In: Proc.of IEEE Conference on Decision & Control , San Diego 2006, USA.
  • [7] Matignon D., "Stability results on fractional differential equation with applications to control processing". In: Proc. of IMACS , Lille 1996, France.
  • [8] Matignon D., "Stability properties for generalized fractional differential systems". In: Proc. of ESAIM, 1998, pp. 145-158.
  • [9] Ortigueira M. D., "Introduction to fractional linear systems. Part 1: Continuous-time case". In: IEE Proc. – Vis. Image Signal Process 9, no. 147, 2000, pp. 62-70.
  • [10] Ortigueira M. D., "Introduction to fractional linear systems. Part 2: Discrete-time systems". In: IEE Proc. – Vis. Image Signal Process , no. 147, 2000, pp. 71-78.
  • [11] Podlubny I., Fractional order systems and fractional order controllers.The Academy of Sciences Institute of Experimental Physis, Kosice, Slovak Republic, 1994.
  • [12] Podlubny I., Fractional Differential Equations, Academic Press, San Diego 1999.
  • [13] Sierociuk D., Estimation and control of discrete dynamical systems of fractional order in state space , PhD Dissertation, Faculty of Electrical Engineering, Warsaw University of Technology, Warsaw 2007 (in Polish).
  • [14] Kaczorek T., Theory of Control Systems, WNT, Warszawa, 1974 (in Polish).
  • [15] Kaczorek T., "Reachability and controllability to zero of positive fractional discrete-time systems", Machine Intelligence and Robotics Control , vol. 6, no. 4, 2008, pp. 139-143.
  • [16] Kaczorek T. "Reachability of fractional positive continuous-time linear systems", Pomiary Automatyka Robotyka, no. 2, 2008, pp. 527-537 (on CD-ROM).
  • [17] Kaczorek T, “Fractional positive continuous-time linear systems and their reachability”, Int. J. Appl. Math.Comput. Sci., vol. 18, no. 2, 2008, pp. 223-228.
  • [18] Kilbas A. A., Srivastava H. M. Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam 2006.
  • [19] Reyes-Melo E., Martinez-Vega J.J., Guerrero-Salazar C.A., Ortiz-Mendez U., "Modelling and relaxation phenomena in organic dielectric materials. Application of differential and integral operators of fractional order", J. Optoel. Adv. Mat , vol. 6, no , 2004, pp. 1037-1043.
  • [20] Riu D., Retiére N., Ivanes M., "Turbine generator modeling by non-integer order systems". In: Proc. IEEE Int. Electric Machines and Drives Conference , IEMDC 2001, England, Cambridge, 2001, pp. 185-187.
  • [21] Sabatier J., Agrawal O. P., Machado J. A. T. (Eds), Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering , Springer, London 2007.
  • [22] Sjöberg M., Kari L., "Non-linear behavior of a rubber isolator system using fractional derivatives", Vehicle Syst. Dynam., vol. 37, no. 3, 2002, pp. 217-236.
  • [23] Vinagre B. M., Monje C. A., Calderon A. J., "Fractional order systems and fractional order control actions", Lecture 3. In: Proc. of IEEE CDC'02 TW#2: Fractional Calculus Applications in Automatic Control and Robotics , Las Vegas 2002.
  • [24] Wright W. C., Kerlin T. W., "An efficient computer oriented method for stability analysis of large multivariable systems", Trans. ASME Journal Basic Eng., no. 92, 1970, pp. 279-286.
  • [25] Zhao Ch., Xue D., Chen Y.-Q. (2005), "A fractional order PID tuning algorithm for a class of fractional order plants", In: Proc. IEEE Intern. Conf. on Mechatronics & Automation , Niagara Falls 2005, Canada, pp. 216-221.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.