PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial neural networks for modelling the microhardness of plasma immersion ion implanted AISI 304 SS

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Sztuczne sieci neuronowe w modelowaniu mikrotwardości stali nierdzewnej AISI 304 po implantacji jonowej plazmowym zanurzeniem
Języki publikacji
EN
Abstrakty
EN
This paper reports on the effectiveness of a back-propagation artificial neural network model that predicts the micro-hardness of 304 austenitic stainless steel samples which have been implanted with nitrogen using plasma immersion ion implantation (PIH) at different temperatures between 350 and 500°C. Artificial Neural Networks (ANNs) have the capacity to eliminate the need for expensive and difficult experimental investigation in testing and manufacturing processes. This paper shows that ANNs can be employed for optimizing the process parameters of AISI 304 austenitic stainless steel. Predicted values from the model and experimental values are in close agreement and this indicates the usefulness of applying ANNs in predicting hardness results.
PL
W artykule opisano efektywność modelu opartego o sieć neuronową wstecznej propagacji, który przewiduje mikrotwardość stali nierdzewnej AISI 304 poddanej implantacji jonowej plazmowym zanurzeniem w różnych temperaturach pomiędzy 350 i 500°C. Sztuczna sieć neuronowa (SNN) stwarza możliwość ograniczenia kosztownych i trudnych badań doświadczalnych i prób w warunkach przemysłowych. W artykule pokazano, że SNN może zostać zastosowana do optymalizacji parametrów procesu dla austenitycznej stali nierdzewnej AISI 304. Zaobserwowano dobrą zgodność między przewidywaniami modelu i obserwacjami doświadczalnymi, co potwierdza przydatność SNN w modelowaniu twardości wyrobów po implantacji jonowej plazmowym zanurzeniem.
Wydawca
Rocznik
Strony
86--92
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • 1Celal Bayar University, Turgutlu Technical Vocational School of Higher Education, Turgutlu-Manisa, 45400, Turkey. Celal Bayar University, Faculty of Engineering, Mechanical Engineering Department, 45140 Manisa - Turkey, hulya.kacar@bayar.edu.tr
Bibliografia
  • Anijdan, S.H.M., Madaah-Hosseini, H.R., Bahrami, A., 2007, Flow stress optimization for 304 stainless steel under cold and warm compression by artificial neural network and genetic algorithm, Materials & Design, 28, 2,609-615.
  • Bahrami, A., Mousavi Anijdan, S.H., Madaah Hosseini, H.R., Shafyei, A., Narimani, R., 2005, Effective parameters modeling in compression of an austenitic stainless steel using artificial neural network, Computational Materials Science, 34, 335-341.
  • Dhanasekaran, S., Gnanamoorthy, R., 2007, Abrasive wear behavior of sintered steels prepared with MoS2 addition, Wear, 262, 5-6, 617-623.
  • Durmus, H. K., Özkaya, E., Meriç, C., 2006, The use of neural networks for the prediction of wear loss and surface roughness of AA 6351 aluminium alloy, Materials & Design, 21, 2, 156-159.
  • El-Rahman, A.M. A., El-Hossary, F.M., Negm, N.Z., Prokert F., Richter E., Möller W., 2004, Influence of gas pressure and substrate temperature on PIH nitrocarburizing process of AISI 304 stainless steel, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 226, 4, 499-506.
  • Jia, J., Davalos, J. F., 2006, An artificial neural network for the fatigue study of bonded FRP-wood interfaces, Composite Structures, 74, 1, 106-114.
  • Lopez-Callejas, R., Valencia-Alvarado, R., Munoz-Castro, A.E., Godoy-Cabrera O.G., Barocio S.R., Chavez-Alarcon E., 2004, Plasma immersion ion implantation of AISI 304 stainless steel in toroidal and cylindrical geometries, Vacuum, 76, 287-290.
  • Meulenkamp, F., Alvarez Grima, M., 1999, Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness, Int. J. Rock Mechanics and Mining Sciences, 36, 29-39.
  • Mukherjee, S., Raole, P. M., John P. L, 2002, Effect of applied pulse voltage on nitrogen plasma immersion ion implantation of AISI 316 austenitic stainless steel, Surface and Coatings Technology, 157, 111-117
  • Mukherjee, S., Chakraborty, J., Gupta, S., Raole P. M., John P. L, Rao K. R. M., Mana L, 2002, Low- and high-energy plasma immersion ion implantation for modification of material surfaces, Surface and Coatings Technology, 156, 1-3, 103-109
  • Munoz-Castro, A.E., Valencia-Alvarado, R., Barocio, S.R., López-Callejas, R., Mercado-Cabrera, A., Godoy-Cabrera, O.G., Fuentes-Gonzalez, D.A., Arellano-Calderón J., 2005, Electrochemical corrosion properties of AISI 304 SS treated by Iow, intermediate and high temperature plasma immersion ion implantation in a toroidal vessel, Surface & Coatings Technology, 200, 569-572.
  • Ozerdem, M.S., Kolukisa, S., 2008, Artificial Neural Network approach to predict mechanical properties of hot rolled, nonresulfurized, AISI 10xx series carbon steel bars, J. Mat. Proc. Techn., 199, 437-439.
  • Ram Mohan Rao, K., Mukherjee, S., Raole, P.M., Mana, L, 2005, Characterization of surface microstructure and properties of low-energy high-dose plasma immersion ion-implanted 304L austenitic stainless steel, Surface and Coatings Technology, 200, 7,21, 2049-2057.
  • Saklakoglu, I.E., Saklakoglu, N., Short, K.T., Collins, G.A., 2007, Characterization of austenitic stainless steel after plasma immersion nitrogen and carbon implantation, Materials & Design, 28/5, 1657-1663.
  • Saklakoglu, N., Saklakoglu, I.E, Short, K.T., Collins, G.A., 2006, Tribological behavior of PIH treated AISI 316 L austenitic stainless steel against UHMWPE counterface, Wear, 261, 264-268.
  • Singha, V.K., Singha, D., Singha, T.N., 2001, Prediction of strength properties of some schistose rocks from petro-graphic properties using artificial neural Networks, Int. J. Rock Mechanics & Mining Sciences, 38, 269-284.
  • Sterjovski, Z., Nolan, D., Carpenter, K.R., Dunne, D.P., Norrish, J., 2005, Artificial neural networks for modelling the mechanical properties of steels in various applications, J. Mat. Proc. Techn., 170, 536-544.
  • Su, J. H., Li, P., Dong, Q., Liu, Tian, B., 2005, Modeling of rapidly solidified aging process of Cu-Cr-Sn-Zn alloy by an artificial neural network, Computational Materials Science, 34, 151-156.
  • Taskm, M. and Caligulu, U., 2006, Modelling of microhardness values by means of artificial neural networks of Al/Sicp metal matrix composite material couples processed with diffusion method, Mathematical and Computational Applications, 11,163-172.
  • Vasudevan, M., Rao, B.P.C., Yenkatraman, B., Jayakumar, T., Raj, B., 2005, Artificial neural network modelling for evaluating austenitic stainless steel and Zircaloy-2 welds,/. Mat. Proc. Techn., 169, 396-400.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0023-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.