Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BTB2-0020-0089

Czasopismo

Archives of Civil Engineering

Tytuł artykułu

Shape optimisation of axisymmetric structures using BEM

Autorzy Wilczyński, B. 
Treść / Zawartość http://ace.il.pw.edu.pl http://journals.pan.pl/dlibra/journal/96935
Warianty tytułu
PL Optymalizacja kształtu konstrukcji osiowosymetrycznych z wykorzystaniem MEB
Języki publikacji EN
Abstrakty
EN A numerical optimal design algorithm is described which enables the selection of the internal and/or external shape of the axisymmetric bodies, paying attention on shelllike structures (thick axisymmetrix shells, hollow bodies of revolution) necessary to keep the peak of effective stresses to a possible minimum. The optimal design procedure is the combination of the mathematical methods of Computer Aided Geometrical Design (CAGD) for the shape definition, of the Boundary Element Method (BEM) used for the analysis of the stress field, of the Sensitivity Analysis (SA) using the Finite Difference Method (FDM) for the stress gradient computations, helped by the Sequential Linear Programming (SLP) used as optimisation procedure. Numerical examples indicate the effectiveness of this technique and show the application of the proposed algorithm for stress minimization in thick-walled pressure vessels.
PL Przestawia się numeryczny algorytm poszukiwania kształtu brzegu zewnętrznego lub/i wewnętrznego konstrukcji osiowosymetrycznych, z naciskiem na konstrukcje o kształcie grubych powłok osiowosymetrycz- nych, w celu zminimalizowania piku efektywnych naprężeń na powierzchni konstrukcji. Procedura optymalnego projektowania jest kombinacją matematycznych metod grafiki komputerowej (ang. CAGD) definiujących poszukiwany kształt brzegu, metody elementów brzegowych (MEB) wykorzystywanej do analizy pola naprężeń, analizy wrażliwości metodą różnic skończonych wykorzystywanej do obliczania gradientu naprężeń, wspomaganej procedurą sekwencyjnego programowania liniowego (SPL) jako narzędzia optymalizacji. Przykłady numeryczne potwierdzają efektywność proponowanego algorytmu i pokazują jego zastosowanie do optymalizacji kształtu grubościennych zbiorników ciśnieniowych.
Słowa kluczowe
PL optymalizacja kształtu   konstrukcja osiowosymetryczna   metoda elementów brzegowych   zbiornik ciśnieniowy   zbiornik grubościenny  
Wydawca Komitet Inżynierii Lądowej i Wodnej PAN
Politechnika Warszawska, Wydział Inżynierii Lądowej
Czasopismo Archives of Civil Engineering
Rocznik 2003
Tom Vol. 49, nr 3
Strony 439--455
Opis fizyczny Bibliogr. 44 poz., il.
Twórcy
autor Wilczyński, B.
Bibliografia
1. K. MAGNUCKI, Strength and optimisation of thin-walled pressure vessels [in Polish], Science Publishers, PWN, Warszawa 1998.
2. J. SPENCE, A. S. TOOTH, Pressure vessel design. Concepts and Principles, E & F N Spon, An imprint of Chapman & Hall, London, UK, 1994.
3. W.-M. CHO, B.-E. LEE, S.-H. KOO, Y.-S. LEE, Effects of geometric and material nonlinearity on the stresses of various pressure vessel dome shapes, Comput. Struct. 55, 1063-1075, 1995.
4. B. WILCZYŃSKI, Minimum stress optimisation of axisymmetric shells, Proc. 6'h Conf. Shell Structures, Theory and Applications, Gdańsk-Jurata, October 12-14, 279-280, 1998.
5. B. WILCZYŃSKI, Shape optimisation to minimize stress concentration in shell structures, Identification, Control and Optimisation of Engineering Structures, Civil-Comp Press, Edinburgh, 119-132, 2000.
6. J. G. KIM, Y. Y. KIM, A simple and efficient mixed harmonic element for shells for revolution, Comrnun. Numer. Meth. Engng., 13, 565-572, 1997.
7. W. D. PILKEY, Peterson's stress concentration factors, S-nd edition John Wiley and Sons, New York 1997.
8. J. BŁACHUT, Elastic-plastic stability and optimisation of pressure vessel closures, Monograph 1/20, Cracow University of Technology, Kraków 1996.
9. Y.-L. HSU, C.A. STEELE, S.D. SHEPPARD, Fully stressed thickness profile design at discontinuities of axisymmetric shells, Structural Optimization, 7, 199-205, 1994.
10. K. MAGNUCKI, R. KACZYŃSKI, M. WALCZAK, Minimization of stress concentration in pressurized cylindrical vessel [in Polish], Zagadnienia eksploatacji maszyn, 2, 321-331, 1994.
11. K. MAGNUCKI, T. MOŃCZAK, Determination minimal tank wall thickness of circular cylindrical tank witn ellipsoidal heads, The Archive of Mechanical Engineering. 45, 73-85, 1998.
12. K. MAGNUCKI, J. LEWIŃSKI, Fully stressed head of a pressure vessel, Thin-Walled Structures, 38, 167-178, 2000.
13. H. AZEGAMI, A. OKITSU, T. OGIHARA, A. TAKAMI, An adaptive growth method for shape refinement: Methodology and applications to pressure vessels and piping, Trans. ASME J. Pres. Ves. Technol., 114, 87-93, 1992.
14. B. J. D. ESPING, D. HOLM, Structural shape optimization using oasis, [IN:] G. I. N. ROZVANY and B. KARIHALO, [Eds.:] Structural Optimisation, Kluwer Academic Publishers, 299-306, 1988.
15. J. ODA, K. YAMAZAKI, On a technique to obtain an optimum strength shape of an axisymmetric body by the finite element method, Bull. JSME, 20, 1524-1532, 1977.
16. A. TAFRESHI, R. T. FENNER, Design sensitivity analysis using the boundary element method, J. of Strain Analysis and Design, 28, 283-291, 1993.
17. J. MIDDLETON, D. R. J. OWEN, Automated design optimization to minimize shearing stress in axisymmetric pressure vessels, Nucl. Engng. Des., 44, 357-366, 1977.
18. J. MIDDLETON, J. PETRUSKA, Optimal pressure vessel design to maximize limit load, Engng. Computations, 3, 287-294, 1986.
19. S. S. BHAVIKATTI, C. V. RAMAKRISHNAN, Optimum shape design of pressure vessel and nozzle function, Nuclear Engng. and Des., Preprint, 1978.
20. S. S. BHAVIKATTI, C. V. RAMAKRISHNAN, Computational efficiency of improved move limit method of sequential linear programming for structural optimisation, Comput. Struct., 11, 191-196, 1980.
21. J. P. QUEAU, Ph. TROMPETTE, Two-dimensional shape optimal design by the finite element method, Int. J. Num. Meth. Engrg, 15, 1603-1612,1980 .
22. L. YOUNSHENG, L. JI, Sensitivity analysis in shape optimization design for pressure vessel, Trans. ASME J. Pres. Ves. Technology, 114, 428-432, 1992.
23. B. WILCZYŃSKI, Multi-disciplinary shape optimization of notches in 2-D machine and structural components, Computer Assisted Mechanics and Engineering Sciences, 3, 245-262, 1996.
24. Z. ZHAO, Shape design sensitivity analysis and optimization using the boundary element method, Springer-Verlag, Berlin 1991.
25. B. WILCZYŃSKI, Geometric modelling of notches in shape optimization problems, Scientific Reports. Mechanical Department, Technical University of Koszalin, 20, 337-346, 1996.
26. F. YAMAGUCHI, Curves and surfaces in computer aided geometric design, Springer-Verlag, Berlin 1988.
27. C. A. BREBBIA, S. UMETANI, J. TREVELYAN, Critical comparison of boundary element and finite element methods for stress analysis, BETECH 85, C. A. BREBIA, B. J. NOYA [Eds.], CMP Publications, Southampton, 225-259, 1985.
28. C. A. BREBBIA, J. TREVELYAN, On the accuracy and convergence of boundary element results for the Floyd pressure vessel problem, Comput. Struct., 34, 513-516, 1986.
29. M. KLEIBER, Parameter sensitivity in nonlinear mechanics. Theory and Finite Element Computations, John Wiley and Sons, Chichester 1997.
30. S. SAIGAL, R. AITHAL, J. H. KANE, Conforming boundary elements in plane elasticity for shape design sensitivity, Int J. Numer. Meth. Engrg, 28, 2795-2811, 1989.
31. B.- Y. LEE, Consideration of body forces in axisymmetric design sensitivity analysis using the BEM, Comput. Struct., 61, 587-596, 1996.
32. L. LAMBERTI, C. PAPPALETTERE, Comparison of the numerical efficiency of different sequential linear programming based algorithms for structural optimization problems, Comput. Struct., 76, 713-728, 2000.
33. B. WILCZYŃSKI,Shape optimization of thick pressure vessels, Proc. S-nd Conf. on Thin-Walled Vessels, 18-21 June, Karłów, Poland, Inst. of Technology, Pedagogical University of Zielona Góra, 201-211, 2001.
34. B. WILCZYŃSKI, Shape optimization of thick axisymmetric shells using BEM, Proc. 7th Conf. Shell Structures, Theory and Applicationa, Gdańsk-Jurata, Poland, October 9-11, 249-251, 2002.
35. A. ARZHAEV, A. BOLDIN, Studies of maximum stresses in the zone of cylinder conjugation with plane bottom, Strength of Materials, 12, 36-40, 1990.
36. C. LABERG, R. BALDUR, The effect of corner radius on plate-cylinder intersections, Trans. ASME J. Pres. Ves. Technology, 102, 79-83, 1980.
37. H. CHEN, J. JIN, J. Yu, Study on the stress concentration at the round corners of flat heads in pressure vessels subjected to internal pressure, Trans. ASME J. Pres. Ves. Technology, 118, 429-433, 1996.
38. R. PREISS, Stress concentration factors of flat end to cylindrical shell connection with a fillet or stress relief groove subjected to internal pressure, Int. J. Pres. Ves. & Piping, 73, 183-190, 1997.
39. C. MATTHECK, D. ERB, K. BETHGE, U. BEGEMAN , Three-dimensional shape optimization of a bar with a rectangular hole, Fatigue Fract. Engng. Mater. Struct., 15, 347-351, 1992.
40. A. A. BAKR, The boundary integral equation method in axisymmetric stress analysis problems, Springer-Verlag, Berlin 1985.
41. A. A. BAKR, M. J. ABDUL-MIHSEIN, R. T. FENNER, Application of the boundary integral equation method to same axisymmetric and three-dimensional pressure vessel problems, Proc. of NUMETA '85 Conf., Swansea, 7-11 Jan., 615-624, 1985.
42. A. A. BECKER, The Boundary Element Method in engineering, McGraw-Hill, London 1992.
43. T. BURCZYŃSKI, The Boundary Element Method in mechanics [In Polish], WNT, Warszawa 1995.
44. M. NOURI, I. A. HUSAIN, Boundary element method for axisymmetric solids under non-symmetrical surface loads, Commun. Numer. Meth. Engrg, 16, 867-875, 2000.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BTB2-0020-0089
Identyfikatory