Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BSW4-0064-0007

Czasopismo

Pomiary Automatyka Kontrola

Tytuł artykułu

On the wear inspection and endurance recovery of Nitinol endodontic files

Autorzy Hryniewicz, T.  Rokosz, K. 
Treść / Zawartość
Warianty tytułu
PL Kontrola zużycia i poprawa jakości nitinolowych wierteł endodontycznych
Języki publikacji EN
Abstrakty
EN The aim of this study was to reveal the effects of operation of endodontic rotary files during a normal use and the possibilities for their endurance recovery. The effect of magnetoelectropolishing on the basic surface, and mechanical properties of Nitinol endodontic rotary files has been also studied. The investigation covered surface interferometry measurements, and SEM studies referred to two groups of endodontic instruments: ready-to-use and/or as-received (AR) tools, and magnetoelectropolished (MEP) instruments, meaning treated by electropolishing in a magnetic field. Overall, magnetoelectropolished (MEP) instruments indicated significantly better surface characteristics than those as-received (AR). Our earlier studies have revealed several better and improved surface characteristics of Nitinol samples treated with MEP in comparison with those electropolished under standard EP conditions and as-received (AR) ones. Specifically it has been found that magnetoelectropolishing MEP process may improve the surface, corrosion, and fatigue characteristics of Nitinol samples. When viewing the as-received (AR) instruments with SEM, and measuring the instrument treated surface by interferometry, the evidences of milling grooves, cracks, pits, and metal rollover were observed, contrary to the endodontic file surface after magnetoelectropolishing (MEP). The MEP process has improved most of surface characteristics, having beneficial effects in prolonging the fatigue life of samples. The benefits of MEP process are likely to be caused by a reduction in surface irregularities and essential changes in surface film properties.
PL W pracy ukazano warunki pracy i sposoby zużycia nitinolowych narzędzi endodontycznych oraz możliwości poprawy ich trwałości / jakości. Badania obejmowały SEM i interferometrię narzędzi uszkodzonych w procesie powiększania kanału zębnego, oraz narzędzi po magnetoelektropolerowaniu (MEP). Zużycie narzędzi następuje głównie w wyniku zmęczenia materiału i zależy od ukształtowania kanału zębnego. Wstępne badania wykazują, że proces MEP, poprzez zmiany w warstwie wierzchniej, poprawia mechaniczne właściwości Nitinolu.
Słowa kluczowe
PL wiertła endodontyczne   nitinol   magnetoelektropolerowanie   SEM   interferometria  
EN Endodontic rotary files   nitinol   magnetoelectropolishing   SEM   interferometry  
Wydawca Wydawnictwo PAK
Czasopismo Pomiary Automatyka Kontrola
Rocznik 2009
Tom R. 55, nr 4
Strony 247--250
Opis fizyczny Bibliogr. 24 poz., rys.
Twórcy
autor Hryniewicz, T.
autor Rokosz, K.
Bibliografia
[1] M. E. Anderson, J. H. W. Price, P. Parashos: Fracture Resistance of Electropolished Rotary Nickel-Titanium Endodontic Instruments. J. Endodontics, 2007, Vol. 33(10), 1212-1216.
[2] T. W. Duerig, A. R. Pelton, D. Stockel: An Overview of Nitinol Medical Applications Mater. Sci. Eng. 1999, A273-275, 149-160.
[3] T. Hryniewicz, R. Rokicki, K. Rokosz: Magnetoelectropolishing Process Improves Characteristics of Finished Metal Surfaces, Metal Finishing, December, 2006, Vol. 104, No. 12, 26-33.
[4] T. Hryniewicz: Wstęp do obróbki powierzchniowej biomateriałów metalowych (On the surface treatment of metallic biomaterials), book ed. by Politechnika Koszalińska, Koszalin, 2007, (155 pages).
[5] T. Hryniewicz, R. Rokicki: Improved surface properties of Nitinol after magnetoelectropolishing, Proc. of 16th Annual Intl. Confer. on Composites/Nano-Engineering, ICCE-16, 20-26 July, 2008, Kunming, China, ed. by David Hui, (Poster Session, NANO 5, 8b).
[6] T. Hryniewicz: Biomaterials Surface Improvement by Magneto-electropolishing, Proc. of BIT Life Sciences’ 1st Annual World Congress of ibio2008, New Starting Line for Decision Makers in Bio-economy Era, Hangzhou, China, 18-22 May, 2008, Website: http://www.bitlifesciences.com/ibio2008.
[7] R. Rokicki, T. Hryniewicz: Nitinol Surface Finishing by Magneto-electropolishing, Transactions of the Institute of Metal Finishing, 2008, Vol. 86, No 5/September, 280-285.
[8] R. Rokicki, T. Hryniewicz, K. Rokosz: Modifying Metallic Implants with Magnetoelectropolishing, Medical Device & Diagnostic Industry, 25 October 2007, invited paper, January 2008, Vol. 30, No. 1, 102-111.
[9] Mtwo NiTi system, traditional method, modern results, www.vdw-dental.com.
[10] P. Shi, F.T. Cheng, H.C. Man: Improvement in corrosion resistance of NiTi by anodization in acetic acid, Materials Letters, Vol. 61, 11-12, May 2007, 2385-2388.
[11] N. Ibris, J. C. M. Rosca: EIS study of Ti and its alloys in biological media, J.Electroanal.Chem., Vol. 526, 1-2, May 2002, 53-62.
[12] L. Tan, R. A. Dodd, W. C. Crone: Corrosion and wear-corrosion behaviour of NiTi modified by plasma source implantation, Biomaterials, Vol. 24, 22, October 2003, 3931-3939.
[13] F. T. Cheng, P. Shi, H. C. Man: A preliminary study of TiO2 deposition on NiTi by a hydrothermal method, Surface and Coatings Technology, Vol. 187, 1, 1 October 2004, 26-32.
[14] N. Figueira, T. M. Silva, M. J. Carmezim, and J. C. S. Fernandes: Corrosion behaviour of NiTi alloy, Electrochimica Acta, Vol. 54, 3, 1 Jan 2009, 921-926.
[15] S. Shabolovskaya: Surface Corrosion and Biocompatibility Aspects of Nitinol as an Implant Material, Bio-Med. Mater. Eng. 2002, 12, 69–109.
[16] L. Zhu, J. M. Fino, A. Pelton: Oxidation of Nitinol, Proc. of SMST-2003, Monterey CA, USA, eds. T. W. Duerig, A. Pelton (10 pages).
[17] R. Venugopalan, and C. Trépanier: Assessing the corrosion behaviour of Nitinol for minimally-invasive device design, Min.Invas. & Allied Technol., 2000, 9(2), 67-74.
[18] G. Rondelli, M. F. Brunella, L. De Nardo, A. Cigada: Corrosion Behaviour of Nitinol Vascular Stents, Advances in Sci. and Technology, 2006, Vol. 49, 252-257.
[19] S. A. Summy, C. Trépanier, R. Venugopalan: Topographical and Compositional Homogeneity of Electropolished NiTi Alloy Surfaces, in Society for Biomaterials 28th Annual Meeting Transactions (Mt. Laurel, NJ: Society for Biomaterials, 2002): 510.
[20] T. Hryniewicz, R. Rokicki: Progress in Surface Treatment of Biomaterials, Proc. of 4th International Congress on Precision Machining ICPM 2007 (S. Adamczak, K. Stępień, eds.), Vol. 2, Sandomierz-Kielce, 25-28 Sept., 2007, 159-164.
[21] R. Rokicki, T. Hryniewicz, K. Rokosz: The effect of magneto-electropolishing on corrosion and fatigue behavior of NiTi endodontic rotary files exposed to 5.25% sodium hypochlorite, Proc. Intl. Conf. on Shape Memory & Superelastic Technologies (SMST-2008): Stresa, Italy, Sept. 21–25, 2008 (Poster Session).
[22] T. Hryniewicz, R. Rokicki: Advances in Metallic Biomaterials Surface Finishing, Proc. of 2008 E-MRS Fall Meeting, 15-19 September, 2008, ID 15557, C14 (Poster Session), Warsaw University of Technology, http://www.e-mrs.org/meetings/fall2008, http://www.science24.com/paper/15557.
[23] R. Cincio, W. Kacalak, C. Łukianowicz: System Talysurf CCI 6000 – metodyka analizy cech powierzchni z wykorzystaniem TalyMap Platinum, PAK Vol. 54, No. 4/2008, 187-191.
[24] P. M. McInnes, Jr. S. L. Wendt, D. H. Retief, R. Weinberg: Effect of dentin surface roughness on shear bond stress, Dental Materials, 1990, Vol. 6(3), 204-207.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BSW4-0064-0007
Identyfikatory