Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regular design equations for the discrete reduced-order Kalman filter

Treść / Zawartość
Warianty tytułu
Języki publikacji
In the presence of white Gaussian noises at the input and the output of a system Kalman filters provide a minimum-variance state estimate. When part of the measurements can be regarded as noise-free, the order of the filter is reduced. The filter design can be carried out both in the time domain and in the frequency domain. In the case of full-order filters all measurements are corrupted by noise and therefore the design equations are regular. In the presence of noise-free measurements, however, they are not regular so that standard software cannot readily be applied in a time-domain design. In the frequency domain the spectral factorization of the non-regular polynomial matrix equation causes no problems. However, the known proof of optimality of the factorization result requires a regular measurement covariance matrix. This paper presents regular (reduced-order) design equations for the reduced-order discrete-time Kalman filter in the time and in the frequency domains so that standard software is applicable. They also allow to formulate the conditions for the stability of the filter and to prove the optimality of the existing solutions.
Opis fizyczny
Bibliogr. 17 poz., wzory
  • [1] B. D. O. Anderson and J. B. Moore: Optimal Filtering. Prentice Hall, Englewood Cliffs, NJ, 1979.
  • [2] K. G. Brammer: Lower order optimal linear filtering of nonstationary random sequences. IEEE Trans. on Automatic Control, 13 (1968), 198-199.
  • [3] A. Bryson and D. Johansen: Linear filtering for time-varying systems using measurements containing colored noise. IEEE Trans. on Automatic Control, 10 (1965), 4-10.
  • [4] A. Gelb: Applied optimal estimation. The MIT Press, Cambridge, MA, 1996.
  • [5] G. C. Goodwin, S. F. Graebe and M. E. Salgado: Control system design. Prentice Hall, Upper Saddle River, NJ, 2001.
  • [6] W. M. Haddad and D. S. Bernstein: The optimal projection equations for reduced-order state estimation: The singular measurement case. IEEE Trans. on Automatic Control, 32 (1987), 1135-1139.
  • [7] P. Hippe: Design of reduced-order optimal estimators directly in the frequency domain. Int. J. of Control, 50 (1989), 2599-2614.
  • [8] P. Hippe: Regular design equations for the continuous reduced-order Kalman filter. Archives of Control Sciences, 21 (2011), 349-361.
  • [9] P. Hippe and J. Deutscher: Design of Observer-based Compensators - From the time to the frequency domain. Springer, Berlin Heidelberg New York xLondon, 2009.
  • [10] P. Hippe and Ch. Wurmthaler: Optimal reduced-order estimators in the frequency domain: the discrete-time case. Int. J. of Control, 52 (1990), 1051-1064.
  • [11] T. Kailath: Linear systems. Prentice Hall, Englewood Cliffs, NJ, 1980.
  • [12] H. Kwakernaak and R. Sivan: Linear Optimal Control Systems. Wiley Interscience, New York London Sidney Toronto, 1972.
  • [13] W. F. O'Halloran and B. J. Uttam: Derivation of observers for continuous linear stochastic systems from the discrete formulation. In Proc. of the 6th Asilomar Conference, Pacific Grove, California, (1972), 323-328.
  • [14] J. O'Reilly: Observers for linear systems. Academic Press, London, 1983.
  • [15] H. H. Rosenbrock: State space and multivariable theory. Nelson, London, 1970.
  • [16] E. Soroka and U. Shaked: The properties of reduced-order minimum-variance filters for systems with partially perfect measurements. IEEE Trans. on Automatic Control, 33 (1988), 1022-1034.
  • [17] B. J. Uttam and W. F. O'Halloran: On observers and reduced-order optimal filters for systems with partially perfect measurements. Proc. of the Joint American Control Conference, Stanford, California, (1972), 842-846.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.