Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regular design equations for the continuous reduced-order Kalman filter

Treść / Zawartość
Warianty tytułu
Języki publikacji
Reduced-order Kalman filters yield an optimal state estimate for linear dynamical systems, where parts of the output are not corrupted by noise. The design of such filters can either be carried out in the time domain or in the frequency domain. Different from the full-order case where all measurements are noisy, the design equations of the reduced-order filter are not regular. This is due to the rank deficient measurement covariance matrix and it can cause problems when using standard software for the solution of the Riccati equations in the time domain. In the frequency domain the spectral factorization of the non-regular polynomial matrix equation does not cause problems. However, the known proof of optimality of the factorization result also requires a regular measurement covariance matrix. This paper presents regular (reduced-order) design equations for reduced-order Kalman filters in the time and in the frequency domains for linear continuous-time systems. They allow to use standard software for the design of the filter, to formulate the conditions for the stability of the filter and they also prove that the existing frequency domain solutions obtained by spectral factorization of a non-regular polynomial matrix equation are indeed optimal.
Opis fizyczny
Bibliogr. 14 poz., wzory
  • [1] B. D. O. Anderson and J. B. Moore: Optimal Filtering. Prentice Hall, Englewood Cliffs, NJ, 1979.
  • [2] A. Bryson and D. Johansen: Linear filtering for time-varying systems using measurements containing colored noise. IEEE Trans. on Automatic Control, 10 (1965), 4-10.
  • [3] F. W. Fairman and L. Luk: On reducing the order of Kalman filters for discretetime stochastic systems having singular measurement noise. IEEE Trans. on Automatic Control, 30 (1985), 1150-1152.
  • [4] A. Gelb: Applied optimal estimation. The MIT Press, Cambridge, MA, 1996.
  • [5] G. C. Goodwin, S. F. Graebe and M. E. Salgado: Control system design. Prentice Hall, Upper Saddle River, NJ, 2001.
  • [6] W. M. Haddad and D. S. Bernstein: The optimal projection equations for reduced-order state estimation: The singular measurement case. IEEE Trans. on Automatic Control, 32 (1987), 1135-1139.
  • [7] P. Hippe: Design of reduced-order optimal estimators directly in the frequency domain. Int. J. of Control, 50 (1989), 2599-2614.
  • [8] P. Hippe and J. Deutscher: Design of Observer-based Compensators - From the time to the frequency domain. Springer, Berlin Heidelberg New York London, 2009.
  • [9] T. Kailath Linear systems. Prentice Hall, Englewood Cliffs, NJ, 1980.
  • [10] H. Kwakernaak and R. Sivan: Linear Optimal Control Systems. Wiley Inter-science, New York London Sidney Toronto, 1972.
  • [11] J. O'Reilly: Comments on two recent papers on reduced-order optimal state estimation for linear systems with partially noise corrupted measurements. IEEE Trans. on Automatic Control, 27 (1982), 280-282.
  • [12] J. O'Reilly: Observers for linear systems. Academic Press, London, 1983.
  • [13] H. H. Rosenbrock: State space and multivariable theory. Nelson, London, 1970.
  • [14] A. P. Sage and J. L. Melsa: Estimation theory with applications to communications and control. McGraw Hill, New York, NY, 1971.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.