Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exponential stability of networked control systems with network-induced random delays

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this paper, the problem of exponential stability for the standard form of the state control, realized in a networked control system structure, is studied. To deal with the problem of stability analysis of the event-time-driven modes in the networked control systems the delayed-dependent exponential stability conditions are reformulated and proven. Based on the delay-time dependent Lyapunov-Krasovskii functional, exponential stability criteria are derived. These criteria are expressed as a set of linear matrix inequalities and their structure can be modified to use the bilinear inequality techniques.
Opis fizyczny
Bibliogr. 22 poz., wzory
  • Faculty of Electrical Engineering and Informatics, Department of Cybernetics and Artificial Intelligence, Technical University of Kosice, Kosice, Slovak Republic
  • [1] D. BOYD, L. EL GHAOUI, E. PERON and V. BALAKRISHNAN: Linear matrix inequalities in system and control theory. SIAM, Philadelphia, 1994.
  • [2] L. DRITSAS and A. TZES: Constrained control of event–driven metworked systems In Proc. of the 17th World Congress IFAC 2008, Seoul, Korea, (2008), 11600-11605.
  • [3] B. FICAK: Point delay methods applied to the investigation of stability for a class of distributed delay systems. Systems and Control Letters, 56(3) (2007), 223-229.
  • [4] E. FRIDMAN: New Lyapunov–Krasovskii functionals for stability of linear returded and neutral type systems. Systems and Control Letters, 43(4) (2001), 309-319.
  • [5] K. GU: An integral inequality in the stability problem of time-delay systems. Proc. of the IEEE Conference on Decision and Control, Sydney, Australia, (2000), 2805-2810.
  • [6] K. GU, V.L. KHARITONOV and J. CHEN: Stability of time–delay systems. Birkhäuser, Boston, 2003.
  • [7] Q. L. HAN: A delay decompensation approach to stability of linear neutral systams.Proc. of the 17th World Congress IFAC 2008, Seoul, Korea, (2008), 2607-2612.
  • [8] V. B. KOLMANOVSKII, S. NICULESCU and J.P. RICHARD: On the Lyapunov–Krasovskii functionals for stability analysis of linear delay systems. Int. J. of Control, 72, (1999), 374-384.
  • [9] D. KROKAVEC and A. FILASOVÁ: Discrete–time systems. Elfa, Ko»sice, 2008, (in Slovak).
  • [10] D. KROKAVEC and A. FILASOVÁ: Some aspects of exponential stability for networked control systems with random delays. Proc. of the 17th Int. Conf. Process Control’09. »Strbské Pleso, Slovakia, (2009), 44-50.
  • [11] X. LI and C.E. DE SOUZA: Delay–dependent robust stability and stabilization of uncertain time-delayed systems: A linear matrix inequality approach. IEEE Trans. on Automatic Control, 42 (1997), 1144-1148.
  • [12] S. I. NICULESCU, E.I. VERRIEST, L. DUGARD and J.M. DION: Stability and robust stability of time-delay systems: A guided tour. In: Stability and Control of Time-delay Systems. L. Duggard, E.I. Verriest (Eds.), Springer–Verlag, Berlin, 1998.
  • [13] P. PARK: A delay–dependent stability criterion for systems with uncertain timeinvariant delays. IEEE Trans. on Automatic Control, 44 (1997), 876-877.
  • [14] D. PAUCELLE, D. HENRION, Y. LABIT and K. TAITZ: User’s Guide for SeDuMi Interface 1.04 LAAS-CNRS, Toulouse, 2002.
  • [15] U. SHAKED, I. YAESH and C.E. DE SOUZA: Bounded real criteria for linear time systems with state-delay. IEEE Trans. on Automatic Control, 43 (1998), 1116-1121.
  • [16] X. M. SUN, G.P. LIU, D. REES and W. WANG: A novel method of stability analysis for networked control systems In Proc. of the 17th World Congress IFAC 2008, Seoul, Korea, (2008), 4852-4856.
  • [17] Z. SUN and S.S. GE: Switched linear systems. Control and design. Springer–Verlag, London, 2005.
  • [18] E. I. VERRIEST: Graphical test for robust stability with distributed delayed feedback. In: Stability and control of time-delay systems. L. Duggard, E.I. Verriest (Eds.), Springer–Verlag, London, 1998.
  • [19] V. VESEL«Y and D. ROSINOVÁ: Output feedback controller design. Non–iterative LMI approach. J. of Electrical Engineering, 59(6), (2008), 317-321.
  • [20] D. YUE, Q.L. HAN and J.H. SHE: Robust H¥ control and filtering of networked control systems. In: Networked control systems. Theory and applications. F.Y. Wang, D. Liu (Eds.), Springer, London, 2008, 121-152.
  • [21] S. P. XIAO, M. WU and J. LAM: Non–fragile delay–dependendent H¥ control of linear time–delay system with uncertainties in state and control input. J. of Central South University of Technlogy, 15 (2008), 712-719.
  • [22] X. M. ZHANG, M. WU, J.H. SHE and Y. HE: Delay–dependent stabilization of linear systems with time–varying state and input delays. Automatica, 41(8), (2005), 1405-1412.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.