Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BSW3-0045-0005

Czasopismo

Archives of Control Sciences

Tytuł artykułu

Robust stability of systems with parametric uncertainty

Autorzy Matusu, R.  Prokop, R. 
Treść / Zawartość http://www.degruyter.com/view/j/acsc http://journals.pan.pl/dlibra/journal/96936
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Systems with parametric uncertainty represent an important class of uncertain objects that are characterized by mathematical model containing parameters which are not precisely known, but the values thereof lie within given intervals. This type of uncertainty can arise during the control of real processes, e.g. as a consequence of imprecise measuring or of the influence of certain external conditions. If individual uncertain coefficients (in polynomial, in transfer function etc.) are mutually independent, the uncertainty has a simple interval structure. This article presents several possibilities of interval uncertainty for systems description as well as the tools for robust stability analysis, emphasizing advantages and limitations connected with the use of this simple structures, even for more complex problems.
Słowa kluczowe
EN robust control   interval uncertainty   Kharitonov theorem   zero exclusion condition   polynomial toolbox  
Wydawca Polish Academy of Sciences, Committee of Automation and Robotics
Czasopismo Archives of Control Sciences
Rocznik 2008
Tom Vol. 18, no. 1
Strony 73--87
Opis fizyczny Bibliogr. 20 poz., rys., wzory
Twórcy
autor Matusu, R.
autor Prokop, R.
Bibliografia
[1] J. ACKERMANN, ET AL.: Robust control - systems with uncertain physical parameters. Springer-Verlag London, Great Britain, 1993.
[2] J. J. ANAGNOST, C. A. DESOER and R. J. MINNICHELLI: Generalized Nyquist test for robust stability: Frequency domain generalizations of Kharitonov's theorem. In: Robustness in Identification and Control, (M. Milanese, R. Tempo, A. Vicino, Eds.), New York, Plenum Press, 1989, 79-96.
[3] B. D. O. ANDERSON, E. I. JURY and M. MANSOUR: On robust Hurwitz polynomials. IEEE Trans. Automatic Control, 32 (1987), 909-913.
[4] B. R. BARMISH, C. V. HOLLOT, F. J. KRAUS and R. TEMPO: Extreme point results for robust stabilization of interval plants with first order compensators. IEEE Trans. Automatic Control, 37 (1992), 707-714.
[5] B. R. BARMISH: A generalization of Kharitonov's four polynomial concept for robust stability problems with linearly dependent coefficient perturbations. IEEE Trans. Automatic Control, 34 (1989), 157-165.
[6] B. R. BARMISH: Invariance of the strict Hurwitz property for polynomials with perturbed coefficients. Proc. IEEE Conf. Decision and Control, San Antonio, Texas, (1983).
[7] B. R. BARMISH: New tools for robustness of linear systems. Macmillan, New York, USA, 1994.
[8] A. C. BARTLETT, C. V. HOLLOT and L. HUANG: Root locations of an entire polytope of polynomials: It suffices to check the edges. Mathematics of Control, Signals and Systems, 1 (1988), 61-71.
[9] S. P. BHATTACHARYYA, H. CHAPELLAT and L.H. KEEL: Robust control: The parametric approach. Prentice Hall, Englewood Cliffs, New Jersey, USA, 1995.
[10] S. BIALAS: A necessary and sufficient condition for stability of interval matrices. International .1 of Control, 37 (1983), 717-722.
[11] H. CHAPELLAT and S.P. BHATTACHARYYA: A generalization of Kharitonov's theorem: Robust stability of interval plants. IEEE Trans. Automatic Control, 34 (1989), 306-311.
[12] S. DASGUPTA: Kharitonov's theorem revisited. Systems & Control Letters, 11 (1988), 381-384.
[13] D. HENRION: Course on polynomial methods for robust control. [online]. Merida, Venezuela. [cit. 01-02-2008]. Available from URL: <http://www.laas.fr/--thenrion/courses/polyrobust/>.
[14] V. L. KHARITONOV: Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Differential Equations, 14 (1979), 1483-1485.
[15] V. KUČERA: Robust controllers (Robustni regulatory). Automa, 7(6), (2001), 43-45, (in Czech).
[16] A. W. MIKHAILOV: Method of harmonic analysis in control theory. Avtomatika i Telemekhanika, 3 (1938), 27-81.
[17] R. J. MINNICHELLI, J . J. ANAGOST and C.A. D ESOER: An elementary proof of Kharitonov's theorem with extensions. IEEE Trans. Automatic Control, 34, (1989), 995-998.
[18] Polyx: The Polynomial Toolbox. [online]. [cit. 01-02-2008]. Available from URL: <http://www.polyx.com/>.
[19] M. ŠEBEK, M. HROMČIK and J. JEŽEK: Polynomial toolbox 2.5 and systems with parametric uncertainties. Proc. 3rd IFAC Symp. on Robust Control Design, Prague, Czech Republic, (2000).
[20] M. ŠEBEK: Robust control (Robustni fizeni). [online]. PDF slides for course 'Robust Control', Czech Technical University in Prague. [cit. 01-02-2008]. Available from URL: <http://dcefelk.cvut.cz/ror/prednasky_sebek.html >, (in Czech).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BSW3-0045-0005
Identyfikatory