Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decentralized direct adaptive fuzzy control of non-linear interconnected MIMO system class

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
In this paper, we propose a decentralized direct adaptive fuzzy control method for a class interconnected MIMO non linear plant encountered mainly in robotics. The establishment of the control law introduces very simplest assumptions. Indeed, the functions incorporating the plant dynamic must be continuous and the interconnection terms are bounded by unknown bounds. The fuzzy direct adaptive law is designed to compensate for the interconnections effect and to ensure the closed-loop stability, convergence of the controlled outputs and `boundedness' of adaptation parameters. The proposed method is tested by simulation on the robot Puma 560. In this test the robot is controlled in the operational space as that the robot tip follows a prescribed curve on the sphere where the orientation of the last link (sixth) is maintained radial related to the center of this sphere.
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
  • Ecole Nationale Polytechnique, Laboratoire de commande des processus, Algers, Algeria
  • [1] A. TREBI-OLLENNU and B. A. WHITE: Robust output tracking for MIMO nonlinear systems an adaptive fuzzy systems approach. IEE Proc. Control Theory Appl., 144(6), (1997), 537-544.
  • [2] D. MENNITI, C. PICARDI and N. SORRENTINO: A decentralized adaptive power system stabilizer. Proc. of Int. Conf on Power System Technology, 3 (2000), 1185-1190.
  • [3] YAOCHU JIN: Decentralized adaptive fuzzy control of robot manipulators. IEEE Trans. on Systems, Man, and Cybernetics — Part B: Cybernetics, 28(1), (1998), 47-57.
  • [4] YA-CHEN HSU, GUANRONG CHEN, FELLOW and HAN-XIONG Li: A fuzzy adaptive variable structure controller with applications to robot manipulators. IEEE Trans. on Systems, Man, and Cybernetics — Part B: Cybernetics, 31(3), (2001), 331-340.
  • [5] T.-P. ZHANG, C.-B. FENG, Z.-Z. Dou: Decentralized adaptive variable structure control based on fuzzy logic. Proc. IEEE Int. Conf on Intelligent Processing System, 10 (1997), 359-363.
  • [6] C.-C. CHIANG and Z.-H. KUO: Decentralized adaptive fuzzy controller design of large-scale nonlinear systems with unmatched uncertainties. Proc. of IEEE Int. Conf on Fuzzy Systems, 1 (2002), 668-673.
  • [7] T. WANG and D.-P. ZHAO: Direct adaptive output feedback fuzzy decentralized control for a class of largescale nonlinear systems. Proc. of the Second Int. Conf. on Machine Learning and Cybernetics, 2 (2003), 940-945.
  • [8] O. M. AHTIWASH, M. Z. ABDELMUIN and S. F. SIRAJ: A neural-fuzzy logic approach for modelling and control of nonlinear systems. Proc. of IEEE Inter. Symp. on Intelligent Control, Vancouver, Canada, (2002).
  • [9] Y. GAO and M. J. ER: Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems. IEEE Trans. on Fuzzy Systems, 11(4), (2003), 462-477.
  • [10] A. K. PALIT, G. DOEDING, W. ANHEIER and D. POPOVIC: Backpropagation based training algorithm for Takagi-Sugeno type MIMO neuro-fuzzy network to forecast electrical load time series. Proc. of IEEE Int. Conf. on Fuzzy Systems, 1, (2002), 86-91.
  • [11] Y.-Q. ZHANG and A. KANDEL: Compensatory neurofuzzy systems with fast learning algorithms. IEEE Trans. on Neural Networks, 9(1), (1998), 83-105.
  • [12] J.-S. R. JANG: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. on Systems, Man, and Cybernetics, 23 (1993), 665-685.
  • [13] C.-T. LIN: A neural fuzzy control system with structure and parameter learning. Fuzzy Sets Syst., 70 (1995), 183-212.
  • [14] D. NAUCK and R. KRUSE: A fuzzy neural network learning fuzzy control rules and membership functions by fuzzy error backpropagation. Proc. IEEE Int. Conf. Neural Networks, (1993), 1022-1027.
  • [15] C.-W PARK, C.-H. HYUN, M.-S. PARK, C.-H. LEE, J. KIM and M. PARK: Control of uncertain flexible joint manipulator using adaptive Takagi-Sugeno fuzzy model based controller. Proc. of IEEE Int. Conf on Robotics & Automation, Seoul, Korea, 1 (2001), 985-990.
  • [16] F. H. F. LEUNG, H. K. LAM and P. K. S. TAM: Adaptive control of multivariable fuzzy systems with unknown parameters. Proc. of the 24th Annual Conf of the IEEE Industrial Electronics Society, 3, (198), 1758-1761.
  • [17] C.-S. TSENG and B.-S. CHEN: H decentralized fuzzy model reference tracking control design for nonlinear interconnected systems. IEEE Trans. on Fuzzy Systems, 9(6), (2001), 795-809.
  • [18] J. T. SPOONER and K. PASSINO: Direct adaptive fuzzy control for a class of decentralized systems. Proc. of the American Control Conference, Albuquerque, New Mexico, 5 (1997), 2863-2867.
  • [19] T. S. LI and Q.C. TIANYOU: Direct adaptive fuzzy control for unknown multivariable nonlinear systems with fuzzy logic. Proc. of the Sixth IEEE Int. Conf on Fuzzy Systems, 1 (1997), 355-360.
  • [20] W.-S. LIN and C.-S. CHEN: Robust neurofuzzy controller design of the class of uncertain multivariable nonlinear systems. Proc. of IEEE Inter Conf. on Control Applications, Mexico City, Mexico, (2001).
  • [21] Y.-C. CHANG: Robust tracking control for nonlinear MIMO systems via fuzzy approaches. Automatica, 36 (2000), 1535-1545.
  • [22] C.-C. CHIANG, W.-H. WANG: Robust adaptive fuzzy controller for MIMO nonlinear uncertain systems. Proc. of IEEE Inter. Conf on Decision and Control, Orlando, Florida, USA, 5 (2001), 4376-4381.
  • [23] H. HAN: Adaptive fuzzy control scheme for MIMO systems with uncertainties. Proc. Annual Meeting of the North American Fuzzy Information Processing Society, (2002), 204-209.
  • [24] J. TANG and S. TONG: Output feedback fuzzy adaptive control for a class of largescale nonlinear systems. Proc. of 4th World Congress on Intelligent Control and Automation, Shangai, R.P. China, 3 (2002), 1930-1934.
  • [25] S. TONG and H.-X. Li: Fuzzy adaptive sliding-mode control for MIMO nonlinear systems. IEEE Trans. on Fuzzy Systems, 11(3), (2003), 354-360.
  • [26] H. XU and P. A. IOANNOU: Robust adaptive control for a class of MIMO nonlinear systems with guaranteed errors bounds. IEEE Trans. on Automatic Control, 48(5), (2003), 728-742.
  • [27] H. CHEKIREB, M. TADJINE and D. BOUCHAFFRA: Direct adaptive fuzzy control of nonlinear system with application. Control and Intelligent System, Acta Press, 31(2), 2003, 113-121.
  • [28] W.-Y. WANG, C.-Y. CHENG and Y.-G. LEU: An on-line GA-based outputfeedback Ddirect adaptive fuzzy-neural controller for uncertain nonlinear systems. IEEE Trans. on Systems, Man, and Cybernetics U- Part B: Cybernetics, 34(1), (2004), 334-345.
  • [29] S. LABIOD, M. S. B OUCHERIT and T. M. GUERRA: Adaptive fuzzy control of a class of MIMO nonlinear systems. Fuzzy Sets and Systems, 151, (2005) , 59-77.
  • [30] T. TAKAGI and M. SUGENO: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Systems, Man and Cybernetics, 15(1), (1985), 116-132.
  • [31] L. X. WANG: Design and analysis of fuzzy identifiers of nonlinear dynamics systems. IEEE Trans. on Automatic Control, 40(1), (1995), 11-23.
  • [32] J. J. CRAIG: Introduction to robotics-mechanics and control. Second edition. (Addision-Wesley), 1985.
  • [33] J. J E. SLOTINE and W. LI: Applied nonlinear control. Prentice Hall, Englewood Cliffs, New Jersey, 1991.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.