Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On-line model identification for active noise control using integrated bispectrum analysis

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
In the paper a problem of the on-line model identification of secondary and feedback paths in the feedforward ANC system is considered. The system is closed-loop, with low signal-to-noise ratio and with the disturbance affecting the input and output of the identified paths. To overcome the mentioned difficulties a new approach to the identification based on the higher-order spectra is presented. The integrated bispectrum-based identification method is proposed and the results of its applying are provided and compared with the results derived from the classical methods. The estimates are computed on the basis of data acquired in the laboratory (real-world) experiment as well as in the computer simulations.
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
  • [1] R. E. BLAHUT: Fast algorithms for digital signal processing. Addison-Wesley Publishing Co.,1985
  • [2] B. FARHANG-BOROUJENY: Adaptive filters: theory and applications. J. Wiley & Sons, New York, 1999
  • [3] J. FIGWER: A new method of on-line model identification and update for multichannel active noise control systems. Archives of Control Sciences, 13(2), (2003), 141-155.
  • [4] J. FIGWER: Closed-loop system identification with multisine excitation. Proc. 8th IEEE Int. Conf. Methods and Models in Automation and Robotics, Szczecin, Poland, 1 (2002), 477-482.
  • [5] J. FIGWER: Model identification and update under operation of active noise control systems. Pomiary Automatyka Kontrola, 11 (2003), 22-25.
  • [6] J. FIGWER: Multisine excitation for process identification. Archives of Control Sciences, 5(3-4), (1996), 279-295.
  • [7] J. FIGWER and K. CZYZ: Remote active noise control Llaboratory. Archives of Control Sciences, 13(2), (2003), 231-247.
  • [8] T. GŁÓWKA and J. FIGWER: Higher-order spectra for on-line identification of ANC plants. Proc. 13th Int. Congress on Sound and Vibration, Vienna, Austria, (2006).
  • [9] T. GŁÓWKA: Model identification using higher-order spectra in the presence of non-Gaussian disturbances. Proc. 12th IEEE Int. Conf. Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, (2006).
  • [10] T. GŁÓWKA: Mixed-order estimator. Proc. 5th Mt. PhD Students' Workshop Control & Information Technology, Gliwice, Poland, (2006).
  • [11] C. H. HANSEN and S. D. SNYDER: Active control of noise and vibration. Cambridge University Press, 1997.
  • [12] J. KASPRZYK: Model identification for active noise control system design. Proc. Conf. Active Noise and Vibration Control, Cracow, Poland, (2003).
  • [13] S. M. KUO and D. R. MORGAN: Active noise control systems. Algorithms and DSP implementations. J. Wiley & Sons, Inc., New York, 1996.
  • [14] L. LJUNG: System identification - theory for the user. Prentice Hall PTR, 1999.
  • [15] M. I. MICHALCZYK: Adaptive control algorithms for three-dimensional zones of quiet. Skalmierski Computer Studio, Gliwice, 2004.
  • [16] M. I. MICHALCZYK: Electro-acoustic plant modelling for active noise control systems. Proc. 10th IEEE Int. Coq: Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, (2004), 1075-1081.
  • [17] M. I. MICHALCZYK; Influence of electro-acoustic plant modelling errors on active noise control system performance. Proc. 10th IEEE Int. Conf. on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, (2004), 1081-1086.
  • [18] P. A. NELSON and S. J. ELIOTT: Active control of sound. Academic Press, London, 1992.
  • [19] C. L. NIKIAS and J. M. MENDEL: Signal processing with higher-order spectra. IEEE Signal Processing Magazine, 10(4), (1993), 1-15.
  • [20] C. L. NIKIAS and A.P. PETROPULU: Higher-order spectra analysis - a nonlinear signal processing framework. PTR Prentice Hall Inc., Englewood Cliffs, New Jersey, 1993.
  • [21] R. PINTELON and J. SCHOUKENS: System identification. A frequency domain approach. IEEE Press, New York, 2001.
  • [22] R. J. SERFLING: Approximation theorems for mathematical statistics. John Wiley and Sons, Inc., New York, 1980.
  • [23] J. K. TUGNAIT and Y. ZHOU: On closed-loop system identification using polyspectral analysis given noisy input-output Lime-domain data. Automatica, 36 (2000), 1795-1808.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.