Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using control theory to make cancer chemotherapy beneficial from phase dependence and resistant to drug resistance

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Two major obstacles against successful chemotheraphy of cancer are (1) the cell-cycle-phase dependence of treatment, and (2) the emergence of resistance of cancer cells to cytotoxic agents. One way to understand and overcome these two problems is to apply optimal control theory to mathematical models of cell cycle dynamics. These models should include division og the cell cycle into subphase and/or the mechanisms of drug resistance. we review our relevant results in mathematical modelling and control of the cell cycle and the mechanisms of gene amplification, and estimation of parameters of the constructed models.
Opis fizyczny
Bibliogr. poz. 148
  • Rice University, USA
  • Department of Automathic Control, Silesian University of Technology, 44-101 Gliwice, Akademicka 16, Polan
  • [1] Abramowitz M., I. A. Stegun (1964) Handbook of Mathematical Functions, National Bureau of Standards, Washington.
  • [2] Agur Z. (1988) The effect of drug schedule on responsiveness to chemotherapy. Annals N. Y. Acad. ci. 504: 274-277.
  • [3] Agur Z., R. Arnon, B. Schachter (1988) Reduction of cytotoxicity to normal tissues by new regimens of phase-specific drugs. Math. Biosci. 92: 1-15.
  • [4] Alison M. R., C. E. Sarraf (1997) Understanding Cancer-From Basic Science to Clinical Practice, Cambridge Univ. Press.
  • [5] Andreef M., A. Tafuri, P. Bettelheim, P. Valent, E. Estey, R. Lemoli, A. Goodacre, B. Clarkson, F. Mandelli, A. Deisseroth (1992) Cytokinetic resistance in acute leukemia: recombinant human granulocyte colony-stimulating factor, granulocyte macrophage colony- stimulating factor, interleukin-3 and stem cell factor e®ects in vitro and clinical trials with granulocyte macrophage colony-stimulating factor. In: Haematology and Blood Transfusion - Acute Leukemias - Pharmacokinetics (ed. Hidemann et al.) 34, Springer-Verlag, Berlin, 108-116.
  • [6] Athreya K. B., P. E. Ney (1972) Branching Processes. Springer, New York.
  • [7] Axelrod D. E, K. A. Baggerly, M. Kimmel (1993) Gene amplification by unequal chromatid exchange: Probabilistic modeling and analysis of drug resistance data. J. Theor. Biol. 168:151-159.
  • [8] Bahrami K., M. Kim(1975) Optimal control of multiplicative control systems arising from cancer therapy. IEEE Trans.Autom.Contr. AC 20: 537-542.
  • [9] Baserga R. (1985) The Biology of Cell Reproduction. Harvard University Press, Cambridge, MA.
  • [10] Bate R. R.(1969) The optimal control of systems with transport lag. In: Advances in Control and Dynamic Systems (ed. Leondes) 7, Academic Press, 165-224.
  • [11] Begg A. C. (1995) The clinical status of Tpot as a predictor? Or why no tempest in the Tpot! Int. J. Radiot. Oncol. Biol. Phys. 32: 1539-1541.
  • [12] Begg A. C. (2002) Critical appraisal of in situ cell kinetic measurements as response predictors in human tumors, Semin. Radiot. Oncol. 3: 144-151.
  • [13] Begg A. C., K. Haustermans, A. A. Hart, S. Dische, M. Saunders, B. Zackrisson, H. Gustaffson, P. Coucke, N. Paschoud, M. Hoyer, J. Overgaard, P. Antognoni, A. Rochetti, J. Bourhis, H. Bartelink, J. C. Horiot, R. Corvo, W. Giaretti, H. Awwad, T. Shouman, T. Jou®roy, Z. Maciorowski, W. Dobrowsky, H. Struikmans, G. D.Wilson (1999) The value of pretreatment cell kinetic parameters as predictors for radiotherapy outcome in head and neck cancer: a multicenter analysis. Radiother.Oncol. 50: 13-23.
  • [14] Begg A. C., N. J. McNally, D. C. Shrieve, H. A. Karcher (1985) A method to measure duration of DNA synthesis and the potential doubling time from a single sample. Cytometry, 6: 620-626.
  • [15] Begg A.C., L. Moonen, I. Hofland, M. Dessing, H. Bartelink (1988) Human tumour cell kinetics using a monoclonal antibody against iododeoxyuridlne Intratumoral sampling variations. Radiother.Oncol. 11: 337-347.
  • [16] Bellman S. (1983) Mathematical Methods in Medicine. World Scientific, Singapore.
  • [17] Bertuzzi A., A. d'Onfrio, A. Fasano, A. Gandolfi (2003) Regresion and regrowth of tumour cords following single-dose anticancer treatment. Bull. Math. Biol. 65, 903-931.
  • [18] Bertuzzi A., M. Faretta, A. Gandolfi, C. Sinisgali, G. Starace, G. Valoti, P. Ubezio (2002) Kinetic heterogenity of an experimental tumour revealed by BrdUrd incorporation and mathematical modelling Bull. Math. Biol. 64, 355-384.
  • [19] Bertuzzi A., A. Fasano, A. Gandolfi, D. Marangi (2002) Cell kinetics in tumour cords studied by a model with variable cell cycle lenght. Math.Biosci. 177-178: 103-125.
  • [20] Bertuzzi A., A. Gandolfi, R. Vitelli (1986) A regularization procedure for estimating cell kinetic parameters from flow-cytometric data. Math. Biosci. 82: 63-85.
  • [21] Bonadonna G., M. Zambetti, P. Valagussa (1995) Sequential of alternating Doxorubicin and CMF regimens in breast cancer with more then 3 positive nodes. Ten years results, JAMA, 273: 542-547.
  • [22] Brown B. W., J. R. Thompson (1975) A rationale for synchrony strategies in chemotherapy. In: Epidemiology (eds. Ludwig, Cooke), SIAM Publ., Philadelpia, 31-48.
  • [23] Brown P. C., S. M. Beverly, R. T. Schimke (1981) Relationship of ampli¯ed Dihydrofolate Reductase genes to double minute chromosomes in unstably resistant mouse fibroblasts cell lines. Mol. Cell. Biol. 1: 1077-1083.
  • [24] de Bruijn N. G.(1958) Asymptotic Methods in Analysis North-Holland, Amsterdam.
  • [25] Calabresi P., P. S. Schein (1993) Medical Oncology, Basic Principles and Clinical Management of Cancer, Mc Graw-Hill, New Yok,
  • [26] Chabner B. A., D. L. Longo (1996) Cancer Chemotherapy and Biotherapy, Lippencott-Raven, Philadelfia
  • [27] Chaplain M. A. J., M. E. Orme (1998) Mathematical modeling of tumor-induced angiogenesis. In: Vascular Morphogenesis In Vivo, In Vitro, In Mednte (eds. Little et al.), Birkhauser, Boston, 205-240.
  • [28] Clare S. E., F. Nahlis, J. C. Panetta (2000) Molecular biology of breast cancer metastasis. The use of mathematical models to determine relapse and to predict response to chemotherapy in breast cancer, Breast Cancer Res., 2: 396-399
  • [29] Cojocaru L., Z. Agur (1992) A theoretical analysis of interval drug design for cellcycle-phase-specific drugs, Math.Biosci. 109: 85-97.
  • [30] Coldman A. J., J. H. Goldie (1983) A model for the resistance of tumor cells to cancer chemotherapeutic agents. Math. Biosci. 65: 291.
  • [31] Collins M. J., R. L. Dedrich (1982) Pharmacokinematics of anticancer drugs. In: Pharmacologic Principles of Cancer Treatment ( ed. Chabner), Saunders, Philadelphia, 77-99.
  • [32] Coly L. P., D. W. van Bekkum and A. Hagenbeek (1984) Enhanced tumor load reduction after chemotherapy induced recruitment and synchronization in a slowly growing rat leukemia model (BNML) for human acute myelonic leukemia, Leukemia Res., 8: 953-963
  • [33] Darzynkiewicz Z., F. Traganos, M. Kimmel (1987) Assay of cell cycle kinetics by multivariate flow cytometry using the principle of stathmokinesis. In: Techniques in Cell Cycle Analysis (eds. Gray, Darzynkiewicz), Humana Press, Clifton, NJ, 291-336.
  • [34] Dibrov B. F., A. M. Zhabotinsky, A. Neyfakh, H. P. Orlova, L. I. Churikova (1983) Optimal scheduling for cell synchronization by cycle-phase-specific blockers. Math.Biosci. 66: 167-185.
  • [35] Dibrov B. F., A. M .Zhabotinsky, I. A .Neyfakh, H. P.Orlova, L. I. Churikova (1985) Mathematical model of cancer chemotherapy. Periodic schedules of phase-specific cytotoxic-agent administration increasing the selectivity of therapy. Math.Biosci., 73: 1-31.
  • [36] Doetsch G.(1964) Introduction to the Theory and Application of the Laplace Transform, Springer, Berlin.
  • [37] Duda Z. (1994) Evaluation of some optimal chemotherapy protocols by using a gradient method, Appl. Math. and Comp. Sci., 4: 257-262
  • [38] Duda Z. (1997) Numerical solutions to bilinear models arising in cancer chemotherapy, Nonlinear World, 4: 53-72
  • [39] Eisen M. (1979) Mathematical Models in Cell Biology and Cancer Chemotherapy, Lecture Notes in Biomathematics, Vol. 30, Springer Verlag, New York
  • [40] Ergun A., K. Camphausen, L. M. Wein (2003) Optimal scheduling in radiotherapy and angiogenic inhibitors, Bull. Math. Biol. 65: 407-424.
  • [41] Feldman A. L., S. K. Libutti (2000) Progress in antiangenic gene therapy of cancer, Cancer 89, 1181-1194
  • [42] Fister K. R., J. C. Panetta (2000) Optimal control applied to cell-cycle-specific cancer chemotherapy, SIAM J. Appl. Math., 60: 1059-1072
  • [43] von Foerster J. (1959) Some remarks on changing populations. In: Kinetics of Cell Proliferation ( ed. Stohlman), Greene & Stratton, New York, 382-407.
  • [44] Folkman J. (1975) Tumor angiogenesis, Cancer 3: 355-388
  • [45] Friedman A., F. Rietich (1999) Analysis of a mathematical model for the growth of tumors J. Math. Biol. 38: 262-284
  • [46] Goldie J. H., A. J. Coldman (1978) A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63: 1727-1733.
  • [47] Goldie J. H., A. Coldman (1998) Drug Resistance in Cancer, Cambridge Univ. Press
  • [48] Gompertz B. (1825) On nature of the function expressive of the law of human mortality, and a new mode of determining the value of life contingencies, Letter to F. Batly, Esq. Phil. Trans. Roy. Soc. 115: 513-585.
  • [49] Gray J. W. (1976) Cell cycle analysis of perturbed cell populations. Computer simulation of sequential DNA distributions. Cell Tissue Kinet. 9: 499-516.
  • [50] Gyllenberg M., G. F. Webb (1989) Quiescence as an explanation of Gompertzian tumor growth. Develop. Aging 53: 25-33.
  • [51] Hahn G. M. (1966) State vector description of the proliferation of mammalian cells in tissue culture, Biophys. J. 6: 275-290.
  • [52] Harnevo L. E., Z. Agur (1991) The dynamics of gene amplification described as a multitype compartmental model and as a branching process. Math. Biosci. 103: 115-138.
  • [53] Harnevo L. E., Z. Agur (1992) Drug resistance as a dynamic process in a model for multistep gene ampli¯cation under various levels of selection stringency. Cancer Chemother. Pharmacol. 30: 469-476.
  • [54] Harnevo L. E., Z. Agur (1993) Use of mathematical models for understanding the dynamics of gene amplification. Mutat. Res. 292: 17-24.0-873.
  • [55] Haustermans K. M., I. Hofland, H. Van Poppel, R. Oyen, W. Van de Voorde, A. C. Begg, J. F. Fowler (1997) Cell kinetic measurements in prostate cancer. Int. J. Radiot. Oncol. Biol. Phys. 37: 1067-1070
  • [56] Haustermans K. M., I. Hofland, G. Pottie, M. Ramaekers, Begg A. C. (1995) Can measurements of potential doubling time (Tpot) be compared between laboratories? A quality control study. Cytometry, 19: 154-163.
  • [57] Holmgren L., M. S. O'Reilly and J. Folkman (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Medicine, 1: 149-153
  • [58] Jackson T. L. (2002) Vascular tumor growth and treatment: Consequences of polyclonality, competition and dynamic vascular support, J. Math. Biol. 44: 201-216
  • [59] Jansson B. (1975) Simulation of cell cycle kinetics based on a multicompartmental model. Simulation 25: 99-108.
  • [60] Kaczorek T.(1998) Weakly positive continuous-time linear systems, Bull. Polish Acad. Sci., 46: 233-245.
  • [61] Kaufman R. J., P. C. Brown, R. T. Schimke (1981) Loss and stabilization of amplified dihydrofolate reductase genes in mouse sarcoma S-180 cell lines. Mol. Cell. Biol. 1: 1084-1093..
  • [62] Kerbel R. S. (1997) A cancer therapy resistant to drug resistance, Nature 390: 335-336
  • [63] Kim M., K. Brahrami, K. B.Woo (1974) A discrete time model for cell age, size and DNA distributions of proliferating cells, and its application to the movement of the labelled cohort. IEEE Trans.Bio-Med. Eng. BME 21: 387-398.
  • [64] Kim M., K. B. Woo, S. Perry (1977) Quantitative approach to design antitumor drug dosage schedule via cell cycle kinetics and systems theory. Ann.Biomed. Eng. 5: 12-33.
  • [65] Kimmel M. (1980) Cellular population dynamics, Math. Biosci. 48: pt.I, 211-224, pt.II, 225-239.
  • [66] Kimmel M., D. E. Axelrod (2001) Branching Processes in Biology. Springer. New York.
  • [67] Kimmel M., D. E. Axelrod (1991)Unequal cell division, growth regulation and colony size of mammalian cells: A mathematical model and analysis of experimental data. J. Theor. Biol. 153: 157-180.
  • [68] Kimmel M., D. E. Axelrod (1990) Mathematical models of gene amplification with applications to cellular drug resistance and tumorigenicity. Genetics 125: 633-644.
  • [69] Kimmel M., D. E. Axelrod (1994) Fluctuation test for two-stage mutations: Application to gene amplification. Mutat. Res. 306:45-60.
  • [70] Kimmel M., D. E. Axelrod, G.M. Wahl (1992) A branching process model of gene amplification following chromosome breakage. Mutat. Res. 276: 225-240.
  • [71] Kimmel M., D. N. Stivers (1994) Time-continuous branching walk models of unstable gene amplification. Bull. Math. Biol.56: 337-357.
  • [72] Kimmel M., A. Swierniak (1983) An optimal control problem related to leukemia chemotherapy, Sci. Bull. Sil.Univ.Tech. (ZN Pol. Sl. s. Aut.) 65: 120-131 (in Polish)
  • [73] Kimmel M., A. Swierniak, A. Polanski (1998) Infinite-dimensional model of evolution of drug resistance of cancer cells, J. Math. Syst. Est. Contr. 8: 1-16
  • [74] Kimmel M., F. Traganos (1986) Estimation and prediction of cell cycle specific effects of anticancer drugs. Math. Biosci. 80: 187-208.
  • [75] Konopleva M., T. Tsao, P. Ruvolo, I. Stiouf, Z. Estrov, C. E. Leysath, S. Zhao, D. Harris, S. Chang, C. E. Jackson, M. Munsell, N. Suh, G. Gribble, T. Honda, W. S. May, M. B. Sporn, M. Andreef (2002) Novel triterpenoid CDDO-Me is a potent inducer of apoptosis and differentiation in acute myelogenous leukemia, Blood 99, 326-335
  • [76] Kooi M. W., J. Stap, G. W. Barendsen (1984) Proliferation kinetics of cultured cells after irradiation with X-rays and 14 MeV neutrons studied by time-lapse cinematography. Int. J. Radiat. Biol. 45: 583-592.
  • [77] Kozusko K., P. Chen, S. G. Grant, B. W. Day, J. C. Panetta (2001) A mathematical model of in vitro cancer cell growth and treatment with the antimitotic agent curacin A, Math. Biosci. 170:1-16
  • [78] Krener A. (1977) The high-order maximal principle and its application to singular controls, SIAM J. Contr.Optim. 15: 256-293
  • [79] Lampkin B. C., N. B. McWilliams, A. M. Mauer (1974) Manipulation of the mitotic cycle in treatment of acute myeloblastic leukemia. Blood 44: 930-940.
  • [80] Ledzewicz U., H. Schattler (2002) Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy, J. Opt.Theory Appl. 114: 609-637:
  • [81] Ledzewicz U., H. Schattler (2002) Analysis of a cell-cycle specific model for cancer chemotherapy, J. Biol. Syst. 10:183-206
  • [82] Luria S. E., M. Delbruck (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491-511.
  • [83] Luzzi K. J., I. C. MacDonald, E. E.Schmidt, N. Kerkvliet, V. L.Morris, A. F. Chambers, A. C. Groom (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases, Amer. J. Pathology, 153: 865-873
  • [84] Lyss A. P. (1992) Enzymes and random synthetics, In: Chemotherapy Source Book, (ed. Perry) , Williams &Wilkins, Baltimore, 403-408
  • [85] Martin R. B. (1992) Optimal control drug scheduling of cancer chemotherapy, Automatica, 28: 1113-1123
  • [86] Martin R. B., K. L. Teo (1994) Optimal Control of Drug Administration in Cancer Chemotherapy, World Scientific, Singapore.
  • [87] Mohler R. R. (1973) Bilinear Control Processes with Applications to Engineering, Ecology and Medicine, Academic Press, New York.
  • [88] Morrow J. (1970) Genetic analysis of azaguanine resistance in an established mouse cell line. Genetics 65: 279-287.
  • [89] Murnane, J. P., M. J. Yezzi (1988) Association of high rate of recombination with amplification of dominant selectable gene in human cells. Som. Cell Molec. Gen. 14: 273-286.
  • [90] Murray J. M. (1990) Optimal control for a cancer chemotherapy problem with general growth and loss functions. Math.Biosci., 98: 273-287.
  • [91] Neustadt W. L. (1967) An abstract variational theory with applications to a broad class of optimization problems. SIAM J. Contr. Optim. 5: 90-137.
  • [92] Noble J., H. Schattler (2002) Sufficient conditions for relative minima of broken extremals in optimal control theory, J. Math. Anal. Appl. 269: 98-128.
  • [93] Norton L., R. Simon (1977) Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep. 61: 1307-1317.
  • [94] O'Reilly M. S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen, J. Folkman (1997) Endostatin: anendogenous inhibitor of angiogenesis and tumour growth, Cell 88: 277-285.
  • [95] Pakes A. G. (1973) Conditional limit theorems for a left-continuous random walk. J. Appl. Prob. 10: 39-53.
  • [96] Panetta J. C., Y. Yanishevski, C. H. Pui, J. T. Sandlund, J. Rubnitz, G. K. Rivera, R. Ribeiro, W. E. Evans, M. V. Relling (2002) A mathematical model of in vivo methotrexate accumulation in acute lymphoblastic leukemia, Cancer Chemother. Pharmacol. 50: 419-428.
  • [97] Panetta J. C., A. Wall, C. H. Pui, M. V. Relling, W. E. Evans (2002) Methotrexate intracellular disposition in acute lymphoblastic leukemia: a mathematical model of gammaglumatyl hydrolase activity, Clinical Cancer Res. 8: 2423-2439.
  • [98] Polanski A., M. Kimmel, A. Swierniak (1997) Qualitative analysis of the infinite dimensional model of evolution of drug resistance. In: Advances in Mathematical Population Dynamics - Molecules, Cells and Man (eds. Arino, Axelrod, Kimmel) World Scientific, Singapore, 595-612.
  • [99] Polanski A., A. Swierniak, Z. Duda (1993) Multiple solutions to the TPVBP arising in optimal scheduling of cancer chemotherapy Proc.IEEE Int. Conf. Syst., Man, Cybern. le Touquet 4: 5-8.
  • [100] Pontryagin L. S., V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko (1964) The Mathematical Theory of Optimal Processes, MacMillan, New York,
  • [101] Raza A., H. Preisler, B. Lampkin, N. Yousuf, C. Tucker, N. Peters, M. White, C. Kukla, P. Gartside, C. Siegrist, J. Bismayer, M. Barcos, J. Bennett, G. Browman, J. Goldberg, H. Grunwald, R. Larson, J. Vardman, K. Vogler (1991) Biological significance of cell cycle kinetics in 128 standard risk newly diagnosed patients with acute myelocytic leukaemia. Brit. Journal of Hematology 79: 33-39.
  • [102] Sachs R. K., L. R. Hlatky, P. Hahnfeldt (2001) Simple ODE models of tumor growth and anti-angiogenic or radiation treatment, Math. Comput. Mod. 33: 1297-1308.
  • [103] Shin K. G., R. Pado (1982) Design of optimal cancer chemotherapy using a continuous-time state model of cell kinetics. Math.Biosci. 59: 225-248.
  • [104] Simek K., M. Kimmel (2003) A note on estimation of dynamics of multiple gene expression based on singular value decomposition. Math.Biosci. 182: 183-199.
  • [105] Smieja J., A. Swierniak, Z. Duda (2000) Gradient method for finding optimal scheduling in infinite dimensional models of chemotherapy. J. Theor. Medicine 3, 25-36.
  • [106] Smieja J., A. Swierniak (2003)Different models of chemotherapy taking into account drug resistance stemming from gene amplification, Int. J. Appl. Math. and Comp. Sci., 13, 297-305
  • [107] Smith K. A., M. B. Stark, P. A. Gorman, G. R. Stark (1992) Fusions near telomeres occur very early in the amplification of CAD genes in Syrian hamster cells. Proc. Natl. Acad. Sci. USA 89: 5427-5431.
  • [108] Speer J. F., V. E. Petrosky, M. W. Retsky, R. H.Wardwell (1984) A stochastic numerical model of breast cancer growth that simulates clinical data. Cancer Res. 44: 124-130.
  • [109] Stark G. R.(1993) Regulation and mechanisms of mammalian gene amplification. Adv. Cancer Res. 61: 87-113.
  • [110] Sullivan M. K., S. E. Salmon (1972) Kinetics of tumor growth and regression in IgC multiple myeloma. J.Clin. Invest. 10: 1697-1708.
  • [111] Sundareshan M. K., R. S. Fundakowski (1985) Periodic optimization of a class of bilinear systems with application to control of cell proliferation and cancer therapy. IEEE Trans.Syst.Man.Cybern. SMC 15: 102-115.
  • [112] Sundareshan M. K., R. S. Fundakowski (1986) Stability and control of a class of compartmental systems with application to cell proliferation and cancer therapy. IEEE Trans.Autom.Contr. AC-31: 1022-1032.
  • [113] Swan G. W. (1990) Role of optimal control in cancer chemotherapy. Math. Biosci. 101: 237-284
  • [114] Swan G. W. (1986) Cancer chemotherapy optimal control using the Verhulst-Pearl equation. Bull Math.Biol. 48: 381-404.
  • [115] Swan G. W. (1985) Optimal control applications in the chemotherapy of multiple myeloma J.Math.Appl.Med.Biol. 2: 139-160.
  • [116] Swan G. W., T. L. Vincent (1977) Optimal control analysis in the chemotherapy of IgC multiple myeloma. Bull. Math. Biol. 39: 317-337
  • [117] Swierniak A. (1994) Some control problems for simplest di®erential models of proliferation cycle. Appl. Math. and Comp. Sci. 4; 223-232
  • [118] Swierniak A. (1995) Cell cycle as an object of control. J. Biol. Syst., 3: 41-54.
  • [119] Swierniak A. (1989) Optimal treatment protocols in leukemia - modeling the proliferation cycle. Trans.IMACS on Sci. Comp. 5: 51-53.
  • [120] Swierniak A., Z. Duda (1992) Some control problems related to optimal chemotherapy - singular solutions. Appl.Math. and Comp. Sci. 2: 293-302.
  • [121] Swierniak A., Z. Duda (1994) Singularity of optimal control problems arising in cancer chemotherapy. Math.and Comp.Modeling 19: 255-262.
  • [122] Swierniak A., Z. Duda, A. Polanski (1992) Strange phenomena in simulation of optimal control problems arising in cancer chemotherapy. Proc.8 Prague Symp. Comp. Simul. Biol. Ecol. Medicine, 58-65.
  • [123] Swierniak A., M. Kimmel (1984) Optimal control application to leukemia chemotherapy protocols design. Sci. Bull. Sil. Univ.Techn (ZN Pol. Sl. s. Aut.), 74:. 261-277 (in Polish).
  • [124] Swierniak A., U. Ledzewicz, H. Schattler (2003) Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Appl. Math. and Comp. Sci., 13, 357-368.
  • [125] Swierniak A., A. Polanski (1993) All solutions to the TPBVP arising in cancer chemotherapy. Proc. 7 Symp. Syst. Model.Contr. Zakopane, 223-229.
  • [126] Swierniak A., A. Polanski (1994) Irregularity of optimal control problem in scheduling of cancer chemotherapy. Appl.Math.and Comp.Sci., 4: 263-271.
  • [127] Swierniak A., A. Polanski, Z. Duda, M. Kimmel (1997) Phase-specific chemotherapy of cancer: Optimisation of scheduling and rationale for periodic protocols. Biocybern. Biomed. Eng. 16, 13-43.
  • [128] Swierniak A., A. Polanski and M. Kimmel (1996) Optimal control problems arising in cell-cycle-specific cancer chemotherapy, Cell Prolif, 29: 117-139.
  • [129] Swierniak A., A. Polanski, M. Kimmel, A. Bobrowski, J. Smieja (1999) Qualitative analysis of controlled drug resistance model - inverse Laplace and semigroup approach, Contr. Cybern. 28: 61-75.
  • [130] Swierniak A., A. Polanski, J.Smieja, M. Kimmel, J. Rzeszowska (2002) Control theoretic approach to random branching walk models arising in molecular biology. Proc. ACC Conf. Anchorage, 3449-3453
  • [131] Swierniak A., J. Smieja (2001) Cancer chemotherapy optimization under evolving drug resistance. Nonlinear Analysis 47: 375-386.
  • [132] Tafuri, A., M. Andreeff (1990) Kinetic rationale for cytokine-induced recruitment of myeloblastic leukemia followed by cycle-speciffc chemotherapy in vitro. Leukemia 4: 826-834.
  • [133] Takahashi M. (1966, 1968) Theoretical basis for cell cycle analysis, pt. I. J.Theor.Biol. 13: 203-211, pt. II 15: 195-209.
  • [134] Tannock I. (1978) Cell kinetics and chemotherapy: a critical review. Cancer Treat. Rep. 62: 1117-1133.
  • [135] Tarnawski R., J. Fowler, K. Skladowski, A. Swierniak, R. Suwinski, B. Maciejewski, A. Wygoda (2002) How fast is repopulation of tumour cells during the treatment gaps. Int. J. Radiot.Oncol. Biol. Phys. 54: 229-236.
  • [136] Tarnawski R., K. Skladowski, A. Swierniak, A. Wygoda, A. Mucha (2000) Repopulation of tumour cells during radiotherapy is doubled during treatment gaps. J. Theor. Medicine 2, 297-306.
  • [137] Tlsty T., B. H. Margolin, K. Lum. (1989) Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by Luria-Delbruck fluctuation analysis. Proc. Natl. Acad. Sci. USA 86: 9441-9445.
  • [138] Traganos F., M. Kimmel (1990) The stathmokinetic experiment: A single-parameter and multiparameter flow cytometric analysis. In: Methods in Cell Biology, Flow Cytometry 33 (eds. Darzynkiewicz, Crissman). Academic Press, New York, 249-270.
  • [139] Varshaver N. B., M. I. Marshak, N. I. Shapiro (1983) The mutational origin of serum independence in Chinese hamster cells in vitro. Int.J.Cancer 31: 471-475.
  • [140] Webb G. F.(1993) Resonances in periodic chemotherapy scheduling. Proc. World Congr. Nonlin. Anal.1992, Tampa, Florida .
  • [141] Westphal J. R., D. J. Ruiter, R. M. De Waal (2000) Anti-angiogenic treatment of human cancer: pitfalls and promises. Int. J. Cancer 15: 87
  • [142] Wheldon T. E. (1988) Mathematical Models in Cancer Chemotherapy. Medical Sci. Series, Hilger, Bristol.
  • [143] White R. A., M. L. Meistrich (1986) A comment on “A method to measure the duration of DNA synthesis and the potential doubling time from a single sample." Cytometry 7: 486-490.
  • [144] White R. A., N. H. A. Terry , M. L. Meistrich , D. P. Calkins (1990) Improved method for computing the potential doubling time from flow cytometric data. Cytometry 11: 314-317.
  • [145] Windle B., B. W. Draper, Y. Yin, S. O'Gorman, G. M. Wahl (1991) A central role for chromosome breakage in gene amplification, deletion, formation, and amplicon integration. Gene Dev. 5: 160-174.
  • [146] Windle B., G. M. Wahl (1992) Molecular dissection of mammalian gene ampli¯cation: New mechanistic insights revealed by analysis of very early events. Mutat. Res. 276: 199-224.
  • [147] Zadeh L. A., C. A. Desoer (1963) Linear System Theory. The State Space Approach. McGraw-Hill, New York.
  • [148] S. Zietz and C. Nicolini: Mathematical approaches to optimization of cancer chemotherapy. Bull. Math. Biol., 41 (1979), 305-324.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.