Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

µ-Synthesis : an algebraic approach

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
In the paper the problem of the robust control of continuous-time systems via [my]-synthesis is investigated. The robust control design is formulated as a local minimalization of the peak of the structured singular value. The control parameters are derived throught polynomial Diophantine equations as a pole placement principle. the poles of the nominal feedback loop are the variables for minimization which was performed by a direct search method. The procedure provided the final controller of a simple PID structure, which was applied to a system with time delay as a perturbation and the results were compared with the D-K iteration, which gave a more complex solution.
Opis fizyczny
Bibliogr. 15 poz.
  • Department of Control Theory, Institute of Information Technologies, Tomas Bata University in Zlin, Mostni 5139, 760 01 Zlin, Czech Republic
  • Department of Control Theory, Institute of Information Technologies, Tomas Bata University in Zlin, Mostni 5139, 760 01 Zlin, Czech Republic
  • [1] J. G. Balas and A. Packard: The control handbook. CRC Press, Inc., 1996, 671-687.
  • [2] J. C. Doyle: Analysis of feedback systems with structured uncertainties. Proc. IEEE, Part-D, 129 (1982), 242-250 .
  • [3] J. C. Doyle: Structure uncertainty in control system design. Proc. 24th IEEE Conf. on Decision and Control, (1985), 260-265.
  • [4] J. C. Doyle, K. Glover, P. Khargonekar And B. Francis: State-space solutions to standard H2 and H∞control problems. IEEE Trans. Automatic Control, 34(8), (1989).
  • [5] J. C. Doyle, B. A. Francis and A. R. Tannenbaum: Feedback Control Theory. Macmillan Publishing Company, 1992.
  • [6] M. Dlapa and R. Prokop: Evolutionary μ-Synthesis for Systems with Parametric Uncertainties. Proc. Conf. on Control Application, Glasgow, (2002).
  • [7] M. Dlapa and R. Prokop: Evolutionary μ-Synthesis: A Simple Controller for Feedback Loop. Proc. 10th Mediterranean Conference on Control and Automation, Lisbon, (2002).
  • [8] V. Kucera: Analysis and design of discrete linear control systems, Academia, 1991.
  • [9] V. Kucera: Diophantine equations in control - a survey. Automatica, 29(6), (1993), 1361-1375. μ-SYNTHESIS: AN ALGEBRAIC APPROACH 71
  • [10] J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright: Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. of Optimization, 9(1), (1998), 112-147.
  • [11] J. L. Lin, I. Postlethwaite and D.W. Gu: μ-K iteration: a new algorithm for μ-synthesis. Automatica, 29 (1993), 219-224.
  • [12] R. Prokop and J.P. Corriou: Design and analysis of simple robust controllers. Int. J. Control, 66(6) (1997), 905-921.
  • [13] R. Prokop, P. Dostal and A. Meszaros: Continuous-time control via proper regulators. J. A, 33(4), (1992),
  • [14] M. Vidyasagar: Control system synthesis - A factorization approach. MIT Press Cambridge, 1985.
  • [15] G. Zames: Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverse. IEEE Trans. Automatic Control, 26 (1981), 301-320.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.