Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Second-order linear state space systems: computeing the transfer funcion using the DFT

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
In this paper the discrete Fournier transform (DFT) is used for determining the transfer function coefficients for second-order linear systems (...). The proposed algorithm is theoretically attractive, practically fast and has been implemeted in Matlab. Two step-by-step examples illustrating the application of the algorithm are given.
Opis fizyczny
Bibliogr. 12 poz.
  • Image Processing and Systems laboratory, Department of Computer Science, Montclair, State University Montclair, N.J 07043, USA
  • [1] R. D. Strum and D. E. Kirk: Contemporary Linear Systems. Brooks Cole, Pacific Grove, CA, 2000.
  • [2] D. Henrion, M. Sebek and V. Kucera: Robust pole placement for second order systems: an LMI approach. (LAAS-CNRS Research report No. 02324, July 2002), IFAC Symp. on Robust Control Design, Milan, Italy, (2003).
  • [3] Y. Chahlaoui, D. Lemonnier, K.Meerbergen, A.Vandendorpe, and P. Van Dooren: Model reduction of second order systems. Int. Symp. on Mathematical Theory of Networks and Systems, University of Notre Dame, (2002).
  • [4] C. Goodwin: Real time block recursive parameter estimation of second order systems. Ph.D Thesis, Department of Computing, The Nottingham Trent University, Nottingham, England, 1997.
  • [5] T. Lee: A simple method to determine the characteristic function f (s) = sI-A by discrete Fourier series and fast Fourier transform. IEEE Trans. Circuit Syst., CAS-23 (1976) p.242.
  • [6] L. E. Paccagnella et al.: FFT calculation of a determinental polynomial. IEEE Trans. Autom. Control, 21 (1976) p.401.
  • [7] G. E. Antoniou, G. O. A. Glentis, S. J. Varoufakis and D. A. Karras: Transfer function determination of singular systems using the DFT. IEEE Trans. Circuit Systems, CAS-36 (1989), 1140-1142.
  • [8] G. E. Antoniou: Transfer function computation for multidimensional systems. Multidimensional Systems and Signal Processing, 13 (2002), 419-426.
  • [9] K. S. Yeung and F. Kumbi: Symbolic matrix inversion with application to electronic circuits. IEEE Trans. Circuit Syst., CAS-35(2), (1988) 235-239.
  • [10] S. Barnett: Leverrier’s algorithm: A new proof and extensions. SIAM J. Matrix Analysis and Applications, 10(4), (1989), 551-556.
  • [11] V. I. Gugnina: Extension of D. K. Fadeev’s method to polynomial matrices. Dokl. Acad. Nauk. USSR, 1 (1958), 5-10.
  • [12] S. K. Mitra: Digital Signal Processing. McGraw–Hill, New York, 2000.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.