Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Metrology and Measurement Systems

Tytuł artykułu

On the use of multi-harmonic least-squares fitting for THD estimation in power quality analysis

Autorzy Ramos, P. M.  Janeiro, F. M.  Radil, T. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The quality of the supplied power by electricity utilities is regulated and of concern to the end user. Power quality disturbances include interruptions, sags, swells, transients and harmonic distortion. The instruments used to measure these disturbances have to satisfy minimum requirements set by international standards. In this paper, an analysis of multi-harmonic least-squares fitting algorithms applied to total harmonic distortion (THD) estimation is presented. The results from the different least-squares algorithms are compared with the results from the discrete Fourier transform (DFT) algorithm. The algorithms are assessed in the different testing states required by the standards.
Słowa kluczowe
EN harmonic analysis   power quality   signal reconstruction   spectral analysis   harmonic distortion  
Wydawca Komitet Metrologii i Aparatury Naukowej PAN
Czasopismo Metrology and Measurement Systems
Rocznik 2012
Tom Vol. 19, nr 2
Strony 295--306
Opis fizyczny Bibliogr. 23 poz., rys., tab., wykr.
autor Ramos, P. M.
autor Janeiro, F. M.
autor Radil, T.
  • Instituto de Telecomunicaçőes, DEEC, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais 1,1049-001 Lisbon, Portugal,
[1] Dugan, R.C., McGranaghan, M.F., Santoso, S., Beaty, H.W.(2003). Electrical Power Systems Quality. NY: McGraw-Hill, 2nd edition.
[2] Radil, T., Ramos, P.M., Janeiro, F.M., Serra, A.C. (2008). PQ monitoring system for real-time detection and classification of disturbances in a single-phase power system. IEEE Trans. Instrum. Meas., 57(8), 1725-1733.
[3] Ardeleanu, A.S., Ramos, P.M. (2011). Real time PC implementation of power quality monitoring system based on multiharmonic least-squares fitting. Metrol. Meas. Syst., 18(4), 543-554.
[4] IEC 61000-4-7 Electromagnetic compatibility (EMC) - Part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto, Edition 2.1, IEC, 2009.
[5] IEC 61000-4-30 Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods, Edition 2.0, 2008.
[6] IEEE Std. 1159-2009. IEEE Recommended Practice for Monitoring Electric Power Quality. IEEE Power & Energy Society, 2009.
[7] Tarasiuk, T., Mindykowski, J. (2012). An extended interpretation of THD concept in the wake of ship electric power systems research. Measurement, 45(2), 207-212.
[8] Bollen, M.H.J., Gu, I.Y.H.(2006). Signal Processing of Power Quality Disturbances. NJ: Wiley.
[9] Sedlacek, M., Stoudek, Z. (2011). Active power measurements - an overview and comparison of DSP algorithms by noncoherent sampling. Metrol. Meas. Syst., 18(2), 173-184.
[10] Szmajda, M., Górecki, K., Mroczka, J. (2010). Gabor Transform, SPWVD, Gabor-Wigner Transform and Wavelet Transform - Tools for Power Quality monitoring. Metrol. Meas. Syst., 17(3), 383-396.
[11] Ramos, P.M., Silva, M.F., Martins, R.C., Serra, A.C. (2006). Simulation and experimental results of multiharmonic least-squares fitting algorithms applied to periodic signals. IEEE Trans. Instrum. Meas., 55(2), 646-651.
[12] Radil, T., Janeiro, F.M., Ramos, P.M., Serra, A.C. (2008). An efficient approach to detect and classify power quality disturbances. International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), 27(5), 1178-1191.
[13] Radil, T., Ramos, P.M., Serra, A.C. (2009). Single-phase power quality analyzer based on a new detection and classification algorithm. In Procedings of IMEKO World Congress. Lisbon, Portugal, 917-922.
[14] IEC 61000-2-4 Electromagnetic compatibility (EMC) - Part 2-4: Environment - Compatibility levels in industrial plants for low-frequency conducted disturbances, Edition 2, IEC, 2002.
[15] IEEE Std. 1057-2007, IEEE Standard for Digitizing Waveform Recorders, New York, April 2008.
[16] IEEE Std. 1241-2011, IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters, New York, 2011.
[17] Ramos, P.R., Serra, A.C. (2007). Least Squares Multiharmonic fitting: Convergence improvements. IEEE Trans. Instrum. Meas., 56(4), 1412-1418.
[18] Ramos, P.R., Serra, A.C. (2008). Impedance measurement using multiharmonic least-squares waveform fitting algorithm. Computer Standards and Interfaces, Elsevier, 30(5), 323-328.
[19] Janeiro, F.M., Ramos, P.M. (2009). Impedance measurements using genetic algorithms and multiharmonic signals. IEEE Trans. Instrum. Meas., 58(2), 383-388.
[20] Renders, H., Schoukens, J., Vilain, G. (1984). High-accuracy spectrum analysis of sampled discrete frequency signals by analytical leakage compensation. IEEE Trans. Instrum. Meas., 33(4), 287-292.
[21] Styvaktakis, E., Bollen, M.H.J., Gu, I.Y.H. (2002). Automatic classification of power system events using RMS voltage measurements. IEEE Power Engineering Society Summer Meeting, 824-829.
[22] Serra, J. (1982). Image Analysis and Mathematical Morphology, 1. Academic Press.
[23] Radil, T., Ramos, P.M., Janeiro, F.M., Serra, A.C. (2007). DSP Based Power Quality Analyzer for Detection and Classification of Disturbances in a Single-phase Power System. Metrol. Meas. Syst., 14(4), 483-494.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BSW1-0097-0010