Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Metrology and Measurement Systems

Tytuł artykułu

Fitting spatial models of geometric deviations of free-form surfaces determined in coordinate measurements

Autorzy Poniatowska, M.  Werner, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Local geometric deviations of free-form surfaces are determined as normal deviations of measurement points from the nominal surface. Different sources of errors in the manufacturing process result in deviations of different character, deterministic and random. The different nature of geometric deviations may be the basis for decomposing the random and deterministic components in order to compute deterministic geometric deviations and further to introduce corrections to the processing program. Local geometric deviations constitute a spatial process. The article suggests applying the methods of spatial statistics to research on geometric deviations of free-form surfaces in order to test the existence of spatial autocorrelation. Identifying spatial correlation of measurement data proves the existence of a systematic, repetitive processing error. In such a case, the spatial modelling methods may be applied to fitting a surface regression model representing the deterministic deviations. The first step in model diagnosing is to examine the model residuals for the probability distribution and then the existence of spatial autocorrelation.
Słowa kluczowe
EN geometric deviations   free-form surface   coordinate measurements   spatial modelling   spatial autocorrelation  
Wydawca Komitet Metrologii i Aparatury Naukowej PAN
Czasopismo Metrology and Measurement Systems
Rocznik 2010
Tom Vol. 17, nr 4
Strony 599--610
Opis fizyczny Bibliogr. 19 poz., rys., tab., wykr.
autor Poniatowska, M.
autor Werner, A.
  • Bialystok University of Technology, Division of Production Engineering, Wiejska 45C, 15-351 Bialystok, Poland,
[1] ElKott, D.F., Veldhuis, S.C. (2007). Cad-based sampling for CMM inspection of models with sculptured features. Eng. Comp., 23, 187-206.
[2] Obeidat, S.M., Raman, S. (2009). An intelligent sampling method for inspecting free-form surfaces. Int. J. Adv. Manuf. Technol., 40, 1125-1136.
[3] Adamczak, S. (2008). Surface geometric measurements. Warszawa: WNT. (in Polish).
[4] Dong, W.P., Mainsah, E., Stout, K.I. (1996). Determination of appropriate sampling conditions for threedimensional microtopography measurement. Int. J. Mach. Tools Manuf., 36, 1347-1362.
[5] Pawlus, P. (2004). Mechanical filtration of surface profiles. Measurement, 35, 325-341.
[6] Adamczak, S., Janecki, D., Makieła, W., Stępień, K. (2010). Quantitative comparison of cylindricity profiles measured with different methods using Legendre-Fourier coefficients. Metrol. Meas. Syst., 17(3), 233-244.
[7] Szabatin, J. (2003). Signal theory fundamentals. Warszawa: WKŁ. (in Polish).
[8] Pawlus, P. (2004). Mechanical filtration of surface profiles. Measurement, 35, 325-341.
[9] Poniatowska, M. (2009). Research on spatial interrelations of geometric deviations determined in coordinate measurements of free-form surfaces. Metrol. Meas. Syst., 16(3), 501-510.
[10] Cliff, A.D., Ord, J.K. (1981). Spatial Processes. Models and Applications. London: Pion Ltd.
[11] Kopczewska, K. (2007). Econometrics and Spatial Statistics. Warszawa: CeDeWu. (in Polish).
[12] Hu, S.M., Li, J.F., Ju, T., Zhu, X. (2001). Modifying the shape of NURBS surfaces with geometric constrains. Comp. Aided Des., 33, 903-912.
[13] Wang, W.K., Zhang, H., Park, H., Yong, J.H.,. Paul, J.C, Sun, J.G. (2008). Reducing control points in lofted B-spline surface interpolation using common knot vector determination. Comp. Aided Des., 40, 999-1008.
[14] Upton, G.J.G., Fingleton, B. (1985). Spatial Data Analysis by Example. John Willey & Sons.
[15] Piegl, L., Tiller, W. (1997). The NURBS book. 2nd ed. New York: Springer-Verlag,.
[16] Brujic, D., Ristic, M., Ainsworth, I. (2002). Measurement-based modification of NURBS surfaces. Comp. Aided Des. 34, 173-183.
[17] Hansford, D., Farin, G. (2002). Curve and Surface Constructions. Handbook of Computer Aided Design. Elsevier Science B.V., Amsterdam, 165-192.
[18] Juhász, I., Hoffmann, M. (2004). Constrained shape modification of cubic B-spline curves by means of knots. Comp. Aided Des., 36, 437-445.
[19] Poniatowska, M. (2008). Determining uncertainty of fitting discrete measurement data to a nominal surface. Metrol. Meas. Syst., 15(4), 595-606.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BSW1-0075-0008