Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Metrology and Measurement Systems

Tytuł artykułu

An Iterative Parameter Estimation Method for Observation Models with Nonlinear Constraints

Autorzy Dang, T. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN This article presents a parameter estimation algorithm for observation models with nonlinear constraints. A prominent example that belongs to this category is the continuous auto-calibration of stereo cameras. Here, our knowledge of the relation between the available measurements and the desired parameters is given by a nonlinear implicit constraint equation. An estimation method derived from an Iterated Extended Kalman Filter is designed for this application. Experiments are conducted with synthetic and real data. The proposed algorithm provides very good results and is readily applicable to a wider range of applications.
Słowa kluczowe
EN recursive estimation   Kalman filter   stereo vision   self-calibration  
Wydawca Komitet Metrologii i Aparatury Naukowej PAN
Czasopismo Metrology and Measurement Systems
Rocznik 2008
Tom Vol. 15, nr 4
Strony 421--432
Opis fizyczny Bibliogr. 17 poz., rys., tab., wykr.
autor Dang, T.
1. Aschwanden P., Guggenbühl W.: “Experimental results from a comparative study on correlation-type registration algorithms”. In Förstner and Ruwiedel, editors, Robust Computer Vision, 1992, pp. 268-282.
2. Dang T., Hoffmann C.: “Tracking camera parameters of an active stereo rig”. In 28th Annual Symposium of the German Association for Pattern Recognition (DAGM 2006), Berlin, September 12-14 2006.
3. Dang T.: „Kontinuierliche Selbstkalibrierung von Stereokameras“. PhD thesis, Universität Karlsruhe (TH), 2007.
4. Gelb A.: Applied Optimal Estimation. MIT Press, Massachusetts Institute of Technology. Cambridge, MA, 1994.
5. Harris C., Stephens M. J.: “A combined corner and edge detector”. In Alvey 88, 1988, pp. 147-152.
6. Hirschmüller H., Innocent P.R., Garibaldi J. M.: “Real-time correlation-based stereo vision with reduced border errors”. International Journal of Computer Vision, 2002, 47(1-3):229-246.
7. Horaud R., Csurka G., Demirdijian D.: “Stereo calibration from rigid motions”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12):1446-1452.
8. Maybeck P. S.: “Stochastic Models”. Estimation and Control, vol. 1, 1982.
9. Pollefeys M.: “Self-Calibration and Metric 3D Reconstruction from Uncalibrated Image Sequences”. PhD thesis, Katholieke Universiteit Leuven, Belgium, 1999.
10. Ressl C.: “Geometry, Constraints and Computation of the Trifocal Tensor”. PhD thesis, Technische Universität Wien, Fakultät für Naturwissenschaften und Informatik, 2003.
11. Sampson P.D.: “Fitting conic sections to very scattered data: An iterative refinement of the bookstein algorithm”. Computer Graphics and Image Processing, 1982, 18:97-108.
12. Simon D. : Optimal State Estimation: Kalman, H-infinity, and Nonlinear Approaches. John Wiley & Sons, 2006.
13. Soatto S., Frezza R., Perona P.: “Motion estimation via dynamic vision”. IEEE ctions on Automatic Control, 1996, 4(3):393-413,.
14. Tsai R. Y.: “A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses”. IEEE Journal of Robotics and Automation, RA-3(4):323-344.
15. Zhang Z., Faugeras O.: “3D Dynamic Scene Analysis, of Springer Series in Information Sciences”. Springer, vol. 27, 1992.
16. Zhang Z., Luong Q., Faugeras O.: “Motion of an uncalibrated stereo rig: Self-calibration and metric reconstruction:. IEEE Transactions on Robotics and Automation, 1996, 12:103-113.
17. Zisserman A., Beardsley P., Reid I.: “Metric calibration of a stereo rig”. In IEEE Workshop on Representations of Visual Scenes, 1995, pp. 93-100.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BSW1-0049-0003