Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sintered composite gradient tool materials

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Purpose: Development of a new generation of the composite gradient tool materials with the core sintered with the matrix obtained using the powder metallurgy of the chemical composition corresponding to the HS6-5-2 highspeed steel reinforced with the WC and TiC type hard carbide phases with the growing portions of these phases in the outward direction from the core to the surface. Design/methodology/approach: Powder Metallurgy, SEM, X-Ray Microanalysis. Findings: Powder metallurgy processes were used to fabricate the proposed gradient materials, i.e., compacting in the closed die and sintering. The method of sequential pouring of the successive portions of the powder mixes into the die was used to ensure a high ductility of the fabricated material core with the HS6-5-2 steel matrix reinforced with the hard WC and TiC carbides phases, so that portions of powder with the high percentage of the hard carbides phases would form the outer layers of the prepreg. Practical implications: Employment of powder metallurgy for fabricating the steel based tool materials gives the possibility to preserve properties characteristic of the traditional cemented carbides and with the high ductility characteristic of steel, yet better than the traditional sintered high-speed steels obtained with the ASP method. Originality/value: Providing of high properties characteristic of cemented carbides with the high ductility characteristic of steel can be mostly because of the possibility of ensuring the gradients of the chemical composition and properties, cutting simultaneously fabrication costs thanks to savings made on the hard carbide phase, used in the tool surface layer only.
Opis fizyczny
Bibliogr. 15 poz.
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland,
  • [1] A. Eder, W. Lengauer, K. Dreyer, H. Van Den Berg, H.-W. Daub, D. Kassel, Phase formation during sintering of functionally graded hardmetals, Proceedings of the 16th International Plansee Seminar, Reutte; 2005; 81-94.
  • [2] W. Acchar, C. Zollfrank, P. Greil, Microstructure and mechanical properties of WC-Co reinforced with NbC, Materials Research 7/3 (2004) 445-450.
  • [3] E. Gordo, A. Rubio, F. Velasco, J.M. Torralba, Microstructural development of high speed steels metal matrix composites, Journal of Materials Science Letters 19 (2000) 2011-2014.
  • [4] P. Romano, F.J. Velasco, J.M. Torralba, N. Candela, Processing of M2 powder metallurgy high-speed steel by means of starch consolidation, Materials Science and Engineering A419 (2006) 1-7.
  • [5] L.A. Dobrzański, G. Matula, A. Várez, B. Levenfeld, J.M. Torralba, Fabrication methods and heat treatment conditions effect on tribological properties of high speed steels, Journal of Materials Processing Technology 157-158 (2004) 324-330.
  • [6] G. Matula, L.A. Dobrzański, A. Várez, B. Levenfeld, J.M. Torralba, Comparison of structure and mechanical properties of HS12-1-5-5 type high-speed steels produced by Powder Injection Moulding and Pressureless Forming method, Journal of Materials Processing Technology 162-163 (2005) 230-235.
  • [7] M. Collin, S. Norgren, Hardness gradients in WC-Co created by local addition of Cr3C2, Proceedings of the 16th International Plansee Seminar, Reutte; 2005, 277-241.
  • [8] A. Varez, B. Levenfeld, J.M. Torralba, G. Matula, L.A. Dobrzański, Sintering in different atmospheres of T15 and M2 high speed steels produced by modified metal injection moulding process, Materials Science and Engineering 366/2 (2004) 318-324.
  • [9] H.Y. Lib, D.F. Luob, K.H. Laua, C.F. Yeung, Use of low carbon/high ductile high-speed steel to make cutting-tools, Journal of Materials Processing Technology 122 (2002) 179-184.
  • [10] M. Rosso, Ceramic and metal matrix composites: Routes and properties, Journal of Materials Processing Technology 175 (2006) 364-375.
  • [11] E.M. Ruiz-Navas, R. Garcia, E. Gordo, F.J. Velasco, Development and characterization of high-speed steel matrix composites gradient materials, Journal of Materials Processing Technology 143-144 (2003) 769-775.
  • [12] X.H. Zheng, Q.X. Yu, J. Lin, M. Lu, S.Q. Pang, Research on the cutting performance carbon nitride cutting tools, Journal of Materials Processing Technology 129 (2002) 157-160.
  • [13] M. Rosso, Properties of coatings on sintered iron alloys, Journal of Achievements in Materials and Manufacturing Engineering 19 (2006) 35-41.
  • [14] L.A. Dobrzański, A. Kloc, G. Matula, J. Domagała, J.M. Torralba, Effect of carbon concentration on structure and properties of the gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 45-48.
  • [15] G. Matula, L.A. Dobrzański, Structure and properties of FGM manufactured on the basis of HS6-5-2, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 101-104.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.