Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BSL7-0048-0008

Czasopismo

Archives of Materials Science and Engineering

Tytuł artykułu

First principles studies of SnO at different structures

Autorzy Erdem, I.  Hüseyin Kart, H.  Cagin, T. 
Treść / Zawartość http://www.archivesmse.org
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: Structural and mechanical properties of the Sn (tin) based oxides SnO and SnO2 are investigated. The aim of this study to determine in which structural phase SnO is found and to calculate its elastic constants at different pressures. Design/methodology/approach: Calculations have been made for three different structures of SnO by density functional theory (DFT). The behavior of structural parameters (lattice constants, internal parameters) and bulk modulus under different pressures, and elastic constants are calculated by using ab initio calculations. Generalized Gradient Approximation (GGA) and Perdew-Burke-Ernzerhof (PBE) parameterization is used. Findings: All of six elastic constants of litharge SnO and three elastic constants of rocksalt structure of SnO are calculated for the first time in this study. Among three structures of SnO, namely, rocksalt, cesium chloride and tetragonal litharge, the most energetically favorable one is the litharge structure at ambient conditions. The calculation of enthalpies with respect to pressure shows that any phase transition from litharge to rocksalt structure does not occur by applying the pressures of up to 5 GPa to the systems. Equilibrium volume, energy and bulk modulus of rutile SnO2 are also calculated. Our results are compared with other available experimental data and theoretical results. Research limitations/implications: Computer calculation speeds and its information storage area are limitations, it will be possible to reach experimental results as near as in condition that they are improved. Practical implications: It is very difficult to measure elastic constants especially under high pressure experimentally. However, they are calculated by first principles calculations. Originality/value: Behavior of elastic constants and structural parameters under high pressures are determined for the first time in this study. Simulations can lead experimentalist to find new applications of these technologically important materials.
Słowa kluczowe
PL cyna   właściwości mechaniczne   funkcjonał  
EN mechanical structure   functional   tin  
Wydawca International OCSCO World Press
Czasopismo Archives of Materials Science and Engineering
Rocznik 2010
Tom Vol. 45, nr 2
Strony 108--113
Opis fizyczny Bibliogr. 25 poz.
Twórcy
autor Erdem, I.
autor Hüseyin Kart, H.
autor Cagin, T.
  • Dartement of Physics, Pamukkale University,Kinikli Campus 20070, Denizli, Turkey, ierdem@pau.edu.tr
Bibliografia
[1] N.E. Christensen, A. Svane, E.L. Peltzer y Blancá, Electronic and structural properties of SnO under pressure, Physical Review B 72/1 (2005) 014109.
[2] W.K. Choi, H. Sung, K.H. Kim, J.S. Cho, S.C. Choi, H.J. Jung, S.K. Koh, C.M. Lee, K. Jeong, Oxidation process from SnO to SnO2, Journal of Materials Science Letters 16/19 (1997) 1551-1554
[3] Z. Han, N. Guo, F. Li, W. Zhang, H. Zhao, Y. Qian, Solvothermal preparation and morphological evolution of stannous oxide, Materials Letters 48/2 (2001) 99-103.
[4] G.W. Watson, The origin of electron distribution in SnO, Journal of Chemical Physics 114/2 (2001) 758-763.
[5] Y. Duan, Electronic properties and stabilities of bulk and low-index surfaces of SnO in comparison with SnO2: A first-principles density functional approach with an empirical correction of van der Waals interactions, Physical Review B 77/4 (2008) 045332.
[6] A. Walsh, G.W. Watson, Electronic structures of rocksalt, litharge and herzenbergite SnO by density functional theory, Physical Review B 70 (2004) 425230.
[7] Y.W. Li, Y. Li, L.J. Zhang, Y.M. Ma, G.T. Zou, The pressure-induced phase transition in SnO: a fisrt-principles study, Journal of Physics: Condensed Matter 19/42 (2007) 425230.
[8] A. Errico Leonardo, Ab initio FP-LAPW study of the semiconductors SnO and SnO2, Physica B 389 (2007) 140-144.
[9] H. Giefers, F. Porsch, G. Wortmann, Structural study of SnO at high pressure, Physical Review B 373 (2006) 76-81.
[10] X. Wang, F.X. Zhang, K. Syassen, M. Hanfland, Y.-L. Mathis, Structural properties, infrared reflectivity, and Raman modes of SnO at high pressure, Physica Status Solidi B 241/14 (2004) 3168-3178.
[11] J. Pannetier, G. Denes, Tin(II), Oxide: Structure Refinement and Thermal Expansion, Acta Crystallographica B 36 (1980) 2763-2765.
[12] D.M. Adams, A.G. Christy, J. Haines, S.M. Clark, Second-order phase transition in PbO and SnO at high pressure: Implications for the litharge-massicot phase transformation, Physical Review B 46/18 (1992) 11358-11367.
[13] N.M.A. Hadia, S.V. Ryabtsev, E.P. Domashevskaya, P.V. Seredin, Structure and photoluminescence properties of SnO2 nanowires synthesized from SnO powder, The European Physical Journal Applied Physics 48/1 (2009) 10603.
[14] H. Giefers, F. Porsch, G. Wortmann, Thermal disproportionation of SnO under high pressure, Solid State Ionics 176 (2005) 1327-1332.
[15] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B 54/16 (1996) 11169-11186.
[16] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6 (1996) 15-20.
[17] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B 59/3 (1999) 1758-1775.
[18] P.E. Blöch, Projector augmented-wave method, Physical Review B 50/24 (1994) 17953-17979.
[19] J.P. Perdew, K. Burke, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, Physical Review Letters 77/18 (1996) 3865-3868.
[20] H.J. Monkhosrt, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13 (1976) 5188-5192.
[21] A.A. Bolzan, C. Fong, B.J. Kennedy, C.J. Howard, Structural Studies of Rutile-Type Metal Dioxides, Acta Crystallographica B 53 (1997) 373-380.
[22] F. Birch, Finite Elastic Strain of Cubic Crystals, Physical Review 71/11 (1947) 809-824.
[23] M. Kalay, H.H. Kart, T. Callan, Elastic properties and pressure induced transitions of ZnO polymorphs from first-principle calculations, Journal of Alloys and Compounds 484 (2009) 431-438.
[24] S. Ozdemir Kart, M. Uludoan, I. Karaman, T. Callan, DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni2MnGa, Physica Status Solidi 205/5 (2008) 1026-1035.
[25] M. Meyer, G. Onida, M. Palummo, L. Reining, Ab initio pseudopotential calculation of the equilibrium structure of tin monoxide, Physical Review B 64/4 (2001) 045119.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BSL7-0048-0008
Identyfikatory