Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of predictive regional ionosphere model to medium range RTK positioning

Warianty tytułu
Języki publikacji
Real Time Kinematic (RTK) GPS positioning over longer distances requires a support of atmospheric (ionospheric and tropospheric) corrections, since the atmospheric errors decorrelate with the growing distances and cannot be completely eliminated by double differencing of the satellite observations. Currently, the most commonly used approach is to derive the atmospheric corrections at the reference station network and provide them in real time to the roving receiver. Another solution, proposed here, is to use predictive atmospheric models in order to derive the atmospheric corrections. This paper presents the test results of the performance assessment of the predictive ionosphere model (UWM-IPM) application to medium-range RTK positioning. The rover data collected within 25 to 67 km from the closest reference station were processed in the kinematic mode with the support of the ionospheric corrections derived from the UWM-IPM model. The RTK solution was derived in both single-and multi-baseline modes, and compared to the two reference solutions obtained without the ionospheric corrections. All numerical tests were carried out using the MPGPS software developed in cooperation with The Ohio State University; a recent extension to the software, developed at the University of Warmia and Mazury in Olsztyn, introduces the predictive ionosphere model to the RTK solution. The test results are very promising, and indicate that predicted ionosphere corrections can effectively support medium-range RTK positioning, and allow for fast ambiguity resolution over distances of several tens of kilometers under moderate ionospheric conditions.
Słowa kluczowe
Opis fizyczny
Bibliogr. 22 poz.
  • Baran, L.W., and I.I. Shagimuratov (1998), The use of GPS for monitoring of the ionospheric disturbances. In: F.K. Brunner (ed.), Advances in Positioning and References Frames, International Association of Geodesy Symposia, vol. 118, 252-258, Springer, Berlin
  • Baran, L.W., I.I. Shagimuratov, and N.J. Tepenitsina (1997), The use of GPS for ionosphericn studies, Artificial Satellites 32, 1, 49-60.
  • Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (2007), BERNESE GPS Software Version 5.0, Astronomical Institute, University of Berne. de Jonge, P.J., and C. Tiberius (1996), The lambda method for integer ambiguity estimation: implementation aspects. LGR Publication, 12, August, 1-49.
  • Goad, C.C., and L. Goodman (1974), A modified hopfield tropospheric refraction correction model, Proc. AGU Annual Fall Meeting, San Francisco, California, December 12-17, 28.
  • Grejner-Brzezinska, D.A., P. Wielgosz, I. Kashani, D.A. Smith, D.S. Robertson, G.L. Mader, and A. Komjathy (2006), The impact of severe ionospheric conditions on the accuracy of RTK position estimation: performance analysis of various ionospheric modeling techniques, Navigation 53, 3, 203-217.
  • Hernandez-Pajares M., J.M. Juan, J. Sanz, and O.L. Colombo (2001), Tomographic modeling of GNSS ionospheric corrections: Assessment and real-time applications, Proc. the ION GPS 2001 Meeting, Sept. 11-14, Salt-Lake City,UT, 2507-2515.
  • Hernandez-Pajares, M., J.M. Juan, and J. Sanz (2006), Real time MSTIDs modeling and application to improve the precise GPS and GALILEO navigation, Proc. the ION GNSS Meeting, Fort Worth, TX, 1358-1368.
  • Kashani, I., D.A. Grejner-Brzezinska, and P. Wielgosz (2005a), Towards instantaneous network-based RTK GPS over 100 km distance, Navigation 52, 4, 239-245.
  • Kashani, I., P. Wielgosz, D.A. Grejner-Brzezinska, and G.L. Mader (2005b), A new network-based rapid-static module for the NGS online positioning user service - OPUS-RS, Proc. the ION 61st Annual Meeting, June 27-29, 2005, Cambridge, MA, 928-936.
  • Krankowski, A., W. Kosek, L.W. Baran, and W. Popiński (2005), Wavelet analysis and forecasting of VTEC obtained with GPS observations over European latitudes, J. Atmos. Sol.-Terr. Phys. 67, 1147-1156, DOI: 10.1016/j.jastp.2005.03.004.
  • Leick, A. (2004), GPS Satellite Surveying, 3rd ed., J. Wiley and Sons, Hoboken, NJ. Liu, Z., S. Skone, Y. Gao, and A. Komjathy (2005), Ionospheric modeling using GPS data, GPS Solutions, 9, 1, 63-66.
  • Odijk, D. (2000), Weighting ionospheric corrections to improve fast GPS positioning over medium distances, Proc ION GPS 2000, Salt Lake City, UT, Sept. 19-22, 1113-1123.
  • Rizos, C. (2002), Network RTK research and implementation: A geodetic perspective, J. GPS 1, 2, 144-150.
  • Rosenthal, G. (2005), The initiative european position determination system (EUPOS), Proc. II International Conference ICNLS'2005, vol. II, Kharkov, Ukraine, Sept. 19-23, 54-59.
  • Teunissen P.J.G. (1994), A new method for fast carrier phase ambiguity estimation, Proc. IEEE PLANS, Las Vegas, NV, 11-15 April, 562-573.
  • Uotila U.A. (1986), Notes on Adjustment Computation. Part I, Dept. Geodetic Science and Surveying, The Ohio State University, Columbus, OH.
  • Vollath, U., H. Landau, X. Chen, K. Doucet, and C. Pagels (2002), Network RTK versus single base RTK - understanding the error characteristics, Proc. IONGPS, Sept.24-27, Portland, OR, 2774-2781.
  • Wang, J., M. Stewart, and M. Tsakiri (1998), A discrimination test procedure for ambiguity resolution on-the-fly, J. Geod. 72, 644-653,
  • Wanninger, L. (2002), Virtual reference stations for centimeter-level kinematic positioning. Proc ION GPS 2002, Sept. 24-27, Portland, Oregon, 1400-1407.
  • Wielgosz, P., I. Kashani, and D.A. Grejner-Brzezinska (2005), Analysis of longrange network RTK during severe ionospheric storm, J. Geod. 79, 9, 524-531,
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.