PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Absorbing boundary conditions in a fourth-order accurate SH-wave staggered grid finite difference algorithm

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the implementation of two well known absorbing boundary conditions in a fourth-order accurate staggered grid SH-wave finite difference (FD) algorithm with variable grid size, in a very simplified manner. Based on simulated results, it was confirmed that the Clayton and Engquist absorbing boundary condition causes edge-reflections in case of larger angle of incidence of body waves on the model edges. The results of various numerical experiments revealed that the Israeli and Orszag sponge boundary condition is efficient enough to avoid edge-reflections for any angle of incidence of the body. We recommend the use of both the Clayton and Engquist and Israeli and Orszag absorbing boundary conditions simultaneously to avoid any edge-reflections
Czasopismo
Rocznik
Strony
1090--1108
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
autor
Bibliografia
  • Boore, D.M. (1972), Finite difference methods for seismic wave propagation in heterogeneous materials. In: B.A. Bolt (ed.), Methods in Computational Physics, vol. 11, Academic Press, New York.
  • Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef (1985), A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics 50,705-708, DOI: 10.1190/1.1441945.
  • Clayton, R.W., and B. Engquist (1977), Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seism. Soc. Am. 67, 1529-1540.
  • Chew, W.C., and Q.H. Liu (1996), Perfectly matched layers for elastodynamics: a new absorbing boundary condition, J. Comp. Acoustics 4, 341-359,
  • Dablain, M.A. (1986), The application of high-order differencing to the scalar wave equation, Geophysics 51, 54-66, DOI: 10.1190/1.1442040.
  • Graves, R.W. (1996), Simulating seismic wave propagation in 3-D elastic media using staggered grid finite difference, Bull. Seism. Soc. Am. 86, 1091-1107.
  • Israeli, M., and S.A. Orszag (1981), Approximation of radiation boundary conditions, J. Comp. Phys. 41, 115-135.
  • Jastram, C., and E. Tessmer (1994), Elastic modelling on a grid with vertically varying spacing, Geophys. Prosp. 42, 357-370,
  • Levander, A.R. (1988), Fourth-order finite difference P-SV seismograms, Geophysics 53, 1425-1436, DOI: 10.1190/1.1442422.
  • Luo, Y., and G. Schuster (1990), Parsimonious staggered grid finite differencing of the wave equation, Geophys. Res. Lett. 17, 155-158.
  • Lysmer, J., and R.L. Kuhlmeyer (1969), Finite dynamic mode in infinite media, J. Eng. Mech. Dyn. 95, 859-877.
  • Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seism. Soc. Am. 66, 639-666.
  • Miyatake, T. (1980), Numerical simulation of earthquake source process by a threedimensional crack model. Part I: Rupture process, J. Phys. Earth 28, 565-598.
  • Moczo, P. (1989), Finite-difference technique for SH-waves in 2-D media using irregular grids-application to the seismic response problem, Geophys. J. Int. 99,
  • Moczo, P., J. Kristek, and E. Bystricky (2000), Stability and grid dispersion of the PSV 4th-order-staggered-grid finite-difference scheme, Stud. Geophys. Geod. 44, 381-402,
  • Moczo, P., J. Kristek, V. Vavrycuk, R.J. Archuleta, and L. Halada (2002), 3D heterogeneous staggered-grid finite-difference modelling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seism. Soc. Am. 92, 3042-3066.
  • Narayan, J.P. (2001a), Site specific strong ground motion prediction using 2.5-D modelling, Geophys. J. Int. 146, 269-281,
  • Narayan, J.P. (2001b), Site specific ground motion prediction using 3-D modelling, ISET J. Earthq. Techn. 38, 17-29.
  • Narayan, J.P. (2003), 2.5D simulation of basin-edge effects on the ground motion characteristics, J. Earth System Sci. 112, 463-469, DOI: 10.1007/
  • Narayan, J.P. (2005), Study of basin-edge effects on the ground motion characteristics using 2.5-D Modeling, Pure Appl. Geophys. 162, 273-289.
  • Narayan, J.P., and S. Kumar (2008), A (2, 4) parsimonious staggered grid SH-wave FD algorithm with variable grid size and VGR-stress imagining technique, Pure Appl. Geophys. 165, 271-295.
  • Narayan, J.P., and A. Ram (2006), Study of effects of underground ridge on the ground motion characteristics, Geophys. J. Int. 165, 180-196,
  • Narayan, J.P., and S.P. Singh (2006), Effects of soil layering on the characteristics of basin-edge induced surface waves and differential ground motion, J. Earthquake. Eng. 10, 595-614,
  • Ohminato, T., and B.A. Chouet (1997), A free surface boundary condition for including 3-D topography in the finite difference method, Bull. Seism. Soc. Am. 87, 494-515.
  • Oprsal, I., and J. Zahradnik (2002), Three-dimensional finite difference method and hybrid modeling of earthquake ground motion, J. Geophys. Res. 107 (B8), 2161,
  • Pitarka, A. (1999), 3-D elastic finite difference modelling of seismic motion using staggered grids with variable spacing, Bull. Seism. Soc. Am. 89, 54-68.
  • Sochacki, J., R. Kubichek, J. George, W.R. Fletcher, and S. Smithson (1987), Absorbing boundary conditions and surface waves, Geophysics 52, 60-71.
  • Virieux, J. (1984), SH wave propagation in heterogeneous media, velocity stress finite-difference method, Geophysics 49, 1933-1957.
  • Wang, Y., J. Xu, and G.T. Schuster (2001), Viscoelastic wave simulation in basin by a variable-grid finite difference method, Bull. Seism. Soc. Am. 91, 1741-1749.
  • Zahradnik, J.P., P. Moczo, and F. Hron (1993), Testing four elastic finite difference schemes for behaviour at discontinuities, Bull. Seism. Soc. Am. 83, 107-129.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0028-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.