Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite difference modeling of seismic wave propagation in monoclinic media

Warianty tytułu
Języki publikacji
Reported in the present paper are the results of the study of propagation of SH waves in the plane of mirror symmetry of a monoclinic multilayered medium with displacement normal to the plane. Dispersion equation has been obtained analytically ussing Haskell’s matrix method, while the finite-difference method has been employed to model the SH-wave propagation to study its phase and group velocities. The stability analysis has been carried out to minimize the exponential growth of the error of finite difference approximation in order to make the finite difference method stable and convergent. Further, variations of phase velocity with respect to both wave number and dispersion parameter for different stability ratios in monoclinic media have been examined and shown graphically. The effect of change of stability ratio on the group velocity of the wave propagation has been also investigated. Likewise, the effects of change of dispersion parameter on phase velocity and the variation of frequency with increase of wave number have been graphically represented and discussed.
Słowa kluczowe
Opis fizyczny
Bibliogr. 20 poz.
  • Aki, K., and P.G. Richards (1980), Quantitative Seismology. Theory and Methods, .H. Freeman & Co., New York.
  • Alterman, Z., and F. Karal (1968), Propagation of elastic waves in layered media by inite differences methods, Bull. Seism. Soc. Am. 58, 367-398.
  • Alterman, Z., and D. Loewenthal (1970), Computer generated seismograms. In: .A. Bolt (ed.), Seismology: Seismic Waves and Earth Oscillations, Methods n Computational Physics, vol. 12, Academic Press, New York.
  • Cao, S., and S. Greenhalgh (1998), 2.5-D modeling of seismic wave propagation: oundary condition, stability criterion and efficiency, Geophysics 63, 2082-090.
  • Chattopadhyay, A., and U. Bandopadhyay (1986), Shear waves in an infinite monoclinic rystal plate, Int. J. Eng. Sci. 24, 1587-1596.
  • Chattopadhyay, A., and S. Saha (1999), Reflection and refraction of quasi SV-waves t the interface of two monoclinic media, Acta Geophys. Pol. 47, 3, 307-322.
  • Chattopadhyay, A., S. Saha, and M. Chakraborty (1996), The reflection of Svwaves at onoclinic medium, Indian J. Pure Appl. Math. 27, 1029-1042.
  • Chattopadhyay, A., S. Saha, and M. Chakraborty (1997), Reflection and transmission f shear waves in monoclinic media, Int. J. Numer. Anal. Met. 21, 495-504.
  • Deresiewiez, H., and R.D. Mindlin (1957), Waves on the surface of a crystal, . Appl. Phys. 28, 669.
  • Emerman, H.S., W. Schmidt, and R.A. Stephen (1982), An implicit finite-difference ormulation of the elastic wave equation, Geophysics 47, 11, 1521-1526.
  • Haskell, N.A. (1953), The dispersion of surface waves in multilayered media, Bull. eis. Soc. Am. 43, 17-34.
  • Kalyani, V.K. (1990), Dispersion of love waves in an initially stressed multilayered rust, Indian J. Pure Appl. Math. 21, 11, 1029-1035.
  • Kar, B.K., and V.K. Kalyani (1989), Dispersion of Love waves in a multi-layered nisotropic porous crust, Ger. Beitr. Geophys. 98, 2, 131-137.
  • Kaur, J., and S.K. Tomar (2004), Reflection and refraction of SH-waves at a corrugated nterface between two monoclinic elastic half-spaces, Int. J. Numer. Anal. Met. 28, 1543-1575, DOI: 10.1002/nag.399.
  • Kelly, K.R., R.W. Ward, S. Treitel, and R.M. Alford (1976), Synthetic Seismograms: A finite - difference approach, Geophysics 41, 2-27.
  • Kraus, E.H., W.F. Hunt, and L.S. Ramsdell (1936), Mineralogy - An Introduction to the Study of Minerals and Crystals, McGraw-Hill, New York.
  • Mitchell, A.R. (1969), Computational Methods in Partial Equations, John Wiley and Sons, New York.
  • Singh, S.J., N. Sachdeva, and S. Khurana (1999), A note on the dispersion of love waves in layered monoclinic elastic media, Proc. Indian Acad. Sci. (Math. Sci.) 109, 417-423, DOI: 10.1007/BF02838002.
  • Sotirpoulous, D.A., and S. Nair (1999), Elastic waves in monoclinic incompressible materials and reflection from an interface. J. Acoust. Soc. Am. 109, 417-423.
  • Tiersten, H.F. (1969), Linear Piezoelectric Plate Vibrations, Plenum Press, New York.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.