Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of source parameters estimated in the frequency and time domains for seismic events at the Rudna copper mine, Poland

Warianty tytułu
Języki publikacji
Source parameters estimated in the frequency domain for 100 selected seismic events from the Rudna copper mine, with moment magnitude ranging from 1.4 to 3.6, were collected to study their scaling relations and to compare them with the parameters estimated in the time domain. The apparent stress and static stress drop, corrected for the limited bandwidth recording, increase slightly in a similar manner with increasing seismic moment. The ratio of apparent stress to static stress drop, a measure of radiation efficiency, is practically constant and its mean value is close to 0.1. For 37 seismic events, with moment magnitude between 1.9 and 3.4, source parameters were estimated in the time domain from relative source time functions, that displayed unilateral rupture propagation, and their rupture velocity could be estimated. It ranges from 0.23 to 0.80 of shear wave velocity and is almost independent of seismic moment. The fault length, estimated from the average source pulse width and rupture velocity, is clearly dependent on seismic moment and is smaller than the source radius estimated from the corner frequency on the average by about 25 percent. There is no correlation between the values of static stress drop estimated in the frequency and time domains, but the time domain stress drop is in general similar to that estimated in the frequency domain. The apparent stress increases with increasing rupture velocity, and the ratio of apparent stress to static stress drop seems also to depend on rupture velocity.
Opis fizyczny
  • Instytut Geofizyki Polskiej Akademii Nauk ul. Ks. Janusza 64 01-452 Warszawa tel.: (0-22) 6915950,
  • Abercrombie, R.E. (1995), Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5 km depth, J. Geophys. Res. 100, 24,015-24,036.
  • Abercrombie, R.E., and J.R. Rice (2005), Can observations of earthquake scaling constrain slip weakening? Geophys. J. Int. 162, 406-424.
  • Andrews, D.J. (1986), Objective determination of source parameters and similarity of earthquakes of different size. In: S. Das, J. Boatwright, and C.H. Scholz (eds.), Earthquake Source Mechanics, Geophysical Monograph 37, AGU, Washington, DC, 259-267.
  • Beeler, N.M., T.-F. Wong, and S.H. Hickman (2003), On the expected relationships among apparent stress, static stress drop, effective shear fracture energy, and efficiency, Bull. Seism. Soc. Am. 93, 1381-1389.
  • Beresnev, I. (2001), What we can and cannot learn about earthquake sources from the spectra of seismic waves? Bull. Seism. Soc. Am. 91, 397-400.
  • Beresnev, I.A. (2002), Source parameters observable from corner frequency of earthquake spectra, Bull. Seism. Soc. Am. 92, 2047-2048.
  • Bertero, M., D. Bindi, P. Boccacci, M. Cattaneo, C. Eva, and V. Lanza (1997), Application of the projected Landweber method to the estimation of the source time function in seismology, Inverse Problems 13, 465-486.
  • Boatwright, J., and J.B. Fletcher (1984), The partition of radiated energy between P and S waves, Bull. Seism. Soc. Am. 74, 361-376.
  • Brune, J.N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997-5009.
  • Di Bona, M., and A. Rovelli (1988), Effects of the bandwidth limitation on stress drops estimated from integrals of the ground motion, Bull. Seism. Soc. Am. 78, 1818-1825.
  • Domański, B., S.J. Gibowicz, and P. Wiejacz (2001), Source time functions of seismic events induced at a copper mine in Poland: Empirical Green's function approach in the frequency and time domains. In: G. van Aswegen, R.J. Durrheim, and W.D. Ortlepp (eds.), Dynamic Rock Mass Response to Mining, South African Institute of Mining and Metallurgy, Johannesburg, 99-108.
  • Domański, B., S.J. Gibowicz, and P. Wiejacz (2002), Source time function of seismic events at Rudna copper mine, Poland, Pure Appl. Geophys. 159, 131-144.
  • Domański, B., and S.J. Gibowicz (2003), The accuracy of source parameters estimated from the source time function of seismic events at Rudna copper mine in Poland, Acta Geophys. Pol. 51, 347-367.
  • Gibowicz, S.J., and A. Kijko (1994), An Introduction to Mining Seismology, Academic Press, San Diego, 265-294.
  • Gibowicz, S.J., R.P. Young, S. Talebi, and D.J. Rawlence (1991), Source parameters of seismic events at the Underground Research Laboratory in Manitoba, Canada: Scaling relations for events with moment magnitude smaller than -2, Bull. Seism. Soc. Am. 81, 1157-1182.
  • Hartzell, S.H. (1978), Earthquake aftershocks as Green's functions, Geophys. Res. Lett. 5, 1-5.
  • Husseini, M.I., and M.J. Randall (1976), Rupture velocity and radiation efficiency, Bull. Seism. Soc. Am. 66, 1173-1187.
  • Ide, S., and G.C. Beroza (2001), Does apparent stress vary with earthquake size? Geophys. Res. Lett. 28, 3349-3352.
  • Ide, S., G.C. Beroza, S.G. Prejean, and W.L. Ellsworth (2003), Apparent break in earthquake scaling due to path and site effects on deep borehole recordings, J. Geophys. Res. 108, 2271, DOI: 10.1029/2001JB001617.
  • Imanishi, K., and W.L. Ellsworth (2006), Source scaling relationships of microearthquakes at Parkfield, CA, determined using the SAFOD Pilot Hole seismic array. In: R. Abercrombie et al. (eds.) Earthquakes: Radiated Energy and the Physics of Faulting, Geophysical Monograph 170, AGU, Washington, DC, 81-90.
  • Imanishi, K., M. Takeo, W.L. Ellsworth, H. Ito, T. Matsuzawa, Y. Kuwahara, Y. Iio, S. Horiuchi, and S. Ohmi (2004), Source parameters and rupture velocities of microearthquakes in western Nagano, Japan, determined using stopping phases, Bull. Seism. Soc. Am. 94, 1762-1780.
  • Izutani, Y., and H. Kanamori (2001), Scale-dependence of seismic energy-to-moment ratio for strike-slip earthquakes in Japan, Geophys. Res. Lett. 28, 4007-4010.
  • Kanamori, H., and L. Rivera (2004), Static and dynamic relations for earthquakes and their implications for rupture speed and stress drop, Bull. Seism. Soc. Am. 94, 314-319.
  • Keilis-Borok, V.I. (1959), On the estimation of the displacement in an earthquake source and of source dimension, Ann. Geofis. 12, 205-214.
  • Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seism. Soc. Am. 66, 639- 666.
  • McGarr, A. (1999), On relating apparent stress to the stress causing earthquake fault slip, J. Geophys. Res. 104, 3003-3011.
  • McGarr, A., and J.B. Fletcher (2003), Maximum slip in earthquake fault zones, apparent stress, and stick-slip friction, Bull. Seism. Soc. Am. 93, 2355-2362.
  • Mueller, C.S. (1985), Source pulse enhancement by deconvolution of an empirical Green's function, Geophys. Res. Lett. 12, 33-36.
  • Prejean, S.G., and W.L. Ellsworth (2001), Observations of earthquake source parameters at 2 km depth in the Long Valley caldera, eastern California, Bull. Seism. Soc. Am. 91, 165-177.
  • Richardson, E., and T.H. Jordan (2002), Seismicity in deep gold mines of South Africa: Implications for tectonic earthquakes, Bull. Seism. Soc. Am. 92, 1766-1782.
  • Savage, J.C., and M.D. Wood (1971), The relation between apparent stress and stress drop, Bull. Seism. Soc. Am. 61, 1381-1388.
  • Snoke, J.A. (1987), Stable determination of (Brune) stress drop, Bull. Seism. Soc. Am. 77, 530- 538.
  • Stork, A.L., and H. Ito (2004), Source parameter scaling for small earthquakes observed at the western Nagano 800 m-deep borehole, central Japan, Bull. Seism. Soc. Am. 94, 1781-1796.
  • Venkataraman, A., G.C. Beroza, S. Ide, K. Imanishi, H. Ito, and Y. Iio (2006), Measurements of spectral similarity for microearthquakes in western Nagano, Japan, J. Geophys. Res. 111, B03303, DOI:10.1029/2005JB003834.
  • Wiejacz, P. (1992), Calculation of seismic moment tensor for mine tremors from the Legnica-Głogów Copper Basin, Acta Geophys. Pol. 40, 103-122.
  • Wyss, M. and J.N. Brune (1968), Seismic moment, stress, and source dimensions for earthquakes in the California-Nevada region, J. Geophys. Res. 73, 4681-4694.
  • Yamada, T., J.J. Mori, S. Ide, H. Kawakata, Y. Iio, and H. Ogasawara (2005), Radiation efficiency and apparent stress of small earthquakes in a South African gold mine, J. Geophys. Res. 110, B01305, DOI:10.1029/2004JB003221.
  • Yamada, T., J.J. Mori, S. Ide, R.E. Abercrombie, H. Kawakata, M. Nakatani, Y. Iio, and H. Ogasawara (2007), Stress drops and radiated seismic energy of microearthquakes in a South African gold mine, J. Geophys. Res. 112, B03305, DOI: 10.1029/2006JB004553.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.