Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of surface stress on magneto-elastic surface waves in finitely conducting media

Warianty tytułu
Języki publikacji
This paper deals with the investigation of the effect of surface stress and conductivity on the propagation of surface wave in isotropic, homogeneous, elastic media under the action of a primary magnetic field. Formulation of the general surface wave propagation problem has been made, and the corresponding frequency equation has been derived. Frequency equations for Rayleigh wave, surface shear wave and Stoneley wave have been deduced from that of general surface wave as special cases. The effects of surface stress and magnetic field on the wave velocities and attenuation factors of Rayleigh wave and surface shear wave are shown by numerical calculations and graphs. Some important wave velocity equations, as ob-tained by other authors, have been deduced as special cases from the wave velocity equation for Stoneley wave. It is found that the combined effect of surface stress and magnetic field modulates the wave velocity ratios and attenuation factors of Rayleigh wave and surface shear wave to a considerable extent.
Opis fizyczny
  • Acharya, D.P., and A.K. Mondal, 2006, Effect of magnetic field on the propagation of quasitransverse waves in a non homogeneous conducting medium under the theory of nonlinear elasticity, Sadhana 31, 3, 199-211.
  • Baksi, A. and R.K. Bera, 2005, Eigen function expansion method for the solution of magnetothermo elastic problems with thermal relaxation and heat source in three dimensions, Math. Comput. Model. 42, 533-552.
  • Bera, R.K., 1995, On wave propagation in random generalized magneto-thermo-visco-elastic medium, Proc. First Intern. Symp. on "Thermal Stresses and Related Topics", Shizuoka University, 5-7 June 1995, Hamamatsu, Japan, 275-278.
  • Chandrasekhariah, D.S., 1987, Effects of surface stresses and voids on Rayleigh waves in an elastic solid, Int. J. Engng. Sci. 25, 205-211.
  • Chakraborty, S., 1998, Love type magneto-elastic surface waves, Trans. ASME, J. Appl. Mech. 65.
  • Dey, S.N., and P.R. Sengupta, 1978, Effects of anisotropy on surface waves under the influence of gravity, Acta Geophys. Pol. 26, 291-296.
  • Dunkin, J.W., and A.C. Eringen, 1963, On the propagation of waves in electromagnetic elastic solids, Int. J. Engng. Sci. 1, 461-495.
  • Ezzat, M.A., M.I. Othman and A.S. Karamany, 2001, Electromagneto-thermoelastic plane waves with thermal relaxation in a medium of perfect conductivity, J. Therm. Stresses 24, 411-432.
  • Gurtin, M.E., and A.I. Murdoch, 1976, Effect of surface stress on wave propagation in solids, J. Appl. Phys. 47, 4414-4427.
  • Knopoff, L., 1955, The interaction between elastic wave motion and a magnetic field in electrical conductors, J. Geophys. Res. 60, 441-456.
  • Koppe, H., 1948, Uber Rayleigh-Wellen an der Oberflache zweier Medien, Z. Angew. Math. Mech. 28, 355-360.
  • Lee, J.S., and E.N. Its, 1992, Propagation of Rayleigh waves in magneto-elastic media, Trans. ASME, J. Appl. Mech. 59, 812-818.
  • Maugin, G.A., 1988, Shear horizontal surface acoustic waves in solids. In: D.F. Parker and G.A. Maugin (eds.), "Recent Developments in Surface Acoustic Waves", Springer Verlag, Heidelberg, 158-172.
  • Maugin, G.A., 1981, Wave motion in magnetizable deformable solids, Int. J. Engng. Sci. 19, 321-388.
  • Murdoch, A.I., 1976, The propagation of surface waves in bodies with material boundaries, J. Mech. Phys. Solids 24, 137-146.
  • Othman, M.I.A., O. Salalah and Y. Song, 2006, The effect of rotation on the reflection of magneto-thermo elastic waves under thermo elasticity without energy dissipation, Acta Mechanica 184, 189-204.
  • Pal, P.K., D.P. Acharya and P.R. Sengupta, 1997, Effect of surface stresses on surface waves. In: "Elastic Solids", Acad. Proc. Engng. Sci., Sadhana 22, 5, 659-670.
  • Panofsky, W.K.H., and M. Phillips, 1962, Classical Electricity and Magnetism, Addison-Wesley Publishing, Reading.
  • Puri, P., 1972, Plane waves in thermo-elasticity and magneto-thermo-elasticity, Int. J. Engng. Sci. 10, 467-476.
  • Song, Y.Q., Y.C. Zhang, H.Y. Xu and B.H. Lu, 2006, Magneto-thermoviscoelastic wave propagation at the interface between the micro polar viscoelastic media, Appl. Math. Comput. 176, 785-802.
  • Stoneley, R., 1924, Elastic waves at the surface of separation of two solids, Proc. Roy. Soc, London A 106, 416-428.
  • Teisseyre, R., P.A. Varotsos and C.P. Rozłuski, 2004, Electromagnetic excitation and seismicity in the natural time domain: stimulations with theoretical model, Acta Geophys. Pol. 52, 4, 477-496.
  • Tomita, S., and Y. Shindo, 1979, Rayleigh waves in magneto thermo-elastic solid with thermal relaxation, Int. J. Engng. Sci. 17, 227-232.
  • Victorov, I.A., 1975, Elastic waves in a solid half space with a magnetic field, Soviet Physics Dokladi 20, 273-274 (in Russian).
  • Yu Chia, P., and S. Tang, 1966, Magneto-elastic waves in initially stressed conductors, J. Appl. Math. Phys. ZAMP 17, 766-775.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.