Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Acta Geophysica

Tytuł artykułu

Simulation and properties of a non-homogeneous spring-block earthquake model with asperities

Autorzy Munoz-Diosdado, A.  Rudolf-Navarro, A.  Angulo-Brown, F. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The spring-block model proposed by Olami, Feder and Christensen (OFC) has several properties that are similar to those observed in real seismicity. In this paper we propose a modification of the original model in order to take into account that in a real fault there are several regions with different properties (non-homogeneity). We define regions in the network that is reminiscent of the real seismic fault, with different sizes and elastic parameter values. We obtain the Gutenberg-Richter law for the synthetic earthquake distributions of magnitude and the stair-shaped plots for the cumulative seismicity. Again, as in the OFC-homogeneous case, we obtain the stability for the cumulative seismicity stair-shaped graphs in the long-term situation; this means that the straight line slopes that are superior bounds of the staircases have a behavior akin to the homogeneous case. We show that with this non-homogeneous OFC model it is possible to include the asperity concept to describe high-stress zones in the fault.
Słowa kluczowe
EN earthquake   faulting   cellular automata   OFC model  
Wydawca Instytut Geofizyki PAN
Czasopismo Acta Geophysica
Rocznik 2012
Tom Vol. 60, no. 3
Strony 740--757
Opis fizyczny Bibliogr. 40 poz.
autor Munoz-Diosdado, A.
autor Rudolf-Navarro, A.
autor Angulo-Brown, F.
  • Basic Sciences Department, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Mexico D.F, Mexico,
Angulo-Brown, F., and A. Muñoz-Diosdado (1999), Further seismic properties of a spring-block earthquake model, Geophys. J. Int. 139, 2, 410-418, DOI: 10.1046/j.1365-246x.1999.00946.x.
Bach, M., F. Wissel, and B. Drossel (2008), Olami–Feder–Christensen model with quenched disorder, Phys. Rev. E 77, 067101, DOI: 10.1103/PhysRevE.77.067101.
Bak, P. (1996), How Nature Works, Springer, New York.
Bak, P., and C. Tang (1989), Earthquakes as a self-organized critical phenomenon, J. Geophys. Res. 94, B11, 15635-15637, DOI: 10.1029/JB094iB11p15635.
Bak, P., C. Tang, and K. Weisenfeld (1987), Self organized criticality: An explanation of 1/f noise, Phys. Rev. Lett. 59, 381-384, DOI: 10.1103/PhysRevLett.59.381.
Bak, P., C. Tang, and K. Weisenfeld (1988), Self-organized criticality, Phys. Rev. A 38, 1, 364-374, DOI: 10.1103/PhysRevA.38.364.
Barriere, B., and D.L. Turcotte (1994), Seismicity and self-organized criticality, Phys. Rev. E 49, 2, 1151-1160, DOI: 10.1103/PhysRevE.49.1151.
Brown, S.R., C.H. Scholz, and J.B. Rundle (1991), A simplified spring block model of earthquakes, Geophys. Res. Lett. 18, 215-218, DOI: 10.1029/91GL00210.
Burridge, R., and L. Knopoff (1967), Model and theoretical seismicity, Bull. Seismol. Soc. Am. 57, 341-371.
Byerlee, J. D. (1970), Static and kinetic friction under high stress, Int. J. Rock Mech. Min. Sci. 7, 577-582, DOI: 10.1016/0148-9062(70)90018-5.
Carlson, J.M., and J.S. Langer (1989), Mechanical model of an earthquake fault, Phys. Rev. A 40, 6470-6484, DOI: 10.1103/PhysRevA.40.6470.
Caruso, F., and H. Kantz (2011), Prediction of extreme events in the OFC model on a small world network, Eur. Phys. J. B 79, 7-11, DOI: 10.1140/epjb/e2010-10635-5.
Caruso, F., V. Latora, A. Pluchino, A. Rapisarda, and B. Tadic (2006), Olami–Feder–Christensen model in different networks, Eur. Phys. J. B 50, 243-247, DOI: 10.1140/epjb/e2006-00110-5.
Ceva, H. (1995), Influence of defects in a coupled map lattice modeling earthquakes, Phys. Rev. E 52, 1, 154-158, DOI: 10.1103/PhysRevE.52.154.
Christensen, K., and Z. Olami (1992), Scaling, phase transitions, and nonuniversality in a self organized critical cellular automaton model, Phys. Rev. A 46, 1829-1838, DOI: 10.1103/PhysRevA.46.1829.
Corbi, F., F. Funiciello, C. Facenna, G. Ranalli, and A. Heuret (2011), Seismic variability of subduction thrust faults: Insigths from laboratory models, J. Geophys. Res. 116, B06304, DOI: 10.1029/2010JB007993.
Ferguson, C.D., W. Klein, and J.B. Rundle (1999), Long-range earthquake fault models, Comput. Phys. 12, 34-40.
Geller, R.J., D.D. Jackson, Y. Kagan, and F. Mulargia (1997), Earthquakes cannot be predicted, Science 275, 1616-1617, DOI: 10.1126/science.275.5306.1616.
Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 185-188.
Hainzl, S., G. Zöller, and J. Kurths (1999), Similar power laws for foreshock and aftershock sequences in a spring-block model for earthquakes, J. Geophys. Res. 104, B4, 7243-7253, DOI: 10.1029/1998JB900122.
Helmstetter, A., S. Hergarten, and D. Sornette (2004). Properties of foreshocks and aftershocks of the nonconservative self-organized Olami-Feder-Christensen model, Phys. Rev. E 70, 046120, DOI: 10.1103/PhysRevE.70.046120.
Hergarten, S., and H.J. Neugebauer (2002), Foreshocks and aftershocks in the Olami–Feder–Christensen model, Phys. Rev. Lett. 88, 23, 238501, DOI: 10.1103/PhysRevLett.88.238501.
Ito, K., and M. Matsuzaki (1990), Earthquakes as a self organized critical phenomena, J. Geophys. Res. 95, B5, 6853-6860, DOI: 10.1029/JB095iB05p06853.
Kanamori, H. (1981), The nature of seismicity patterns before large earthquakes. In: D.W. Simpson, and P.G. Richard (eds.), Earthquake Prediction, an International Review, American Geophysical Union, Washington D.C., 1-19.
Kawamura, H., T. Yamamoto, T. Kotani, and H. Yoshino (2010), Asperity characteristics of the Olami–Feder–Christensen model of earthquakes, Phys. Rev. E 81, 0311119, DOI: 10.1103/PhysRevE.81.031119.
Kotani, T., H. Yoshino, and H. Kawamura (2008), Periodicity and criticality in the Olami–Feder–Christensen model of earthquakes, Phys. Rev. E 77, R010102, DOI: 10.1103/PhysRevE.77.010102.
Lay, T., and H. Kanamori (1981), An asperity model of large earthquake sequences. In: D.W. Simpson, and P.G. Richard (eds.), Earthquake Prediction, an International Review, American Geophysical Union, Washington D.C., 579-592.
Lomnitz-Addler, J. (1993), Automaton models of seismic fracture: Constraints imposed by the magnitude-frequency relation, J. Geophys. Res. 98, B10, 17745-17756, DOI: 10.1029/93JB01390.
Main, I.G., and M. Naylor (2009), Entropy production and self-organized (sub)criticality in earthquake dynamics, Philos. Trans. Roy. Soc. A 368, 131-144, DOI: 10.1098/rsta.2009.0206.
Muñoz-Diosdado, A., and F. Angulo-Brown (1999), Patterns of synthetic seismicity and recurrence times in a spring-block earthquake model, Rev. Mex. Fís. 45, 4, 393-400.
Nakanishi, H. (1990), Cellular automaton model of earthquakes with deterministic dynamics, Phys. Rev. A 41, 7086-7089, DOI: 10.1103/PhysRevA.41.7086.
Naylor, M., and I.G. Main (2008), Cell scale self-organization in the OFC model for earthquake dynamics, Eur. Phys. J. B 64, 139-146, DOI: 10.1140/epjb/e2008-00279-5.
Olami, Z., H.J.S. Feder, and K. Christensen (1992), Self organized criticality in a continuous, nonconservative cellular automaton model, Phys. Rev. Lett. 68, 1244-1247, DOI: 10.1103/PhysRevLett.68.1244.
Pacheco, J.F., C.H. Scholz, and L.R. Sykes (1992), Changes in frequency size relationship from small to large earthquakes, Nature 355, 71-73, DOI: 10.1038/355071a0.
Rudolf-Navarro, A.H., A. Muñoz-Diosdado, and F. Angulo-Brown (2010), Seismic quiescence patterns as possible precursors of great earthquakes in Mexico, Int. J. Phys. Sci. 5, 6, 651-670.
Ruff, L.R. (1992), Asperity distributions and large earthquake occurrence in subduction zones, Tectonophysics 211, 61-83, DOI: 10.1016/0040-1951(92)90051-7.
Scholz, C.H., and J.T. Engelder (1976), The role of asperity indentation and ploughing in rock friction, I. Asperity creep and stick slip, Int. J. Rock Mech. Min. Sci. 13, 149-154, DOI: 10.1016/0148-9062(76)90819-6.
Suárez, G., T. Monfret, G. Wittlinger, and C. David (1990), Geometry of subduction and depth of the seismogenic zone in the Guerrero gap, Mexico, Nature 345, 336-338, DOI: 10.1038/345336a0.
Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge.
Yamamoto, T., H. Yoshino, and H. Kawamura (2010), Simulation study of the inhomogeneous Olami–Feder–Christensen model of earthquakes, Eur. Phys. J. B 77, 559-564, DOI: 10.1140/epjb/e2010-10503-4.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BSL4-0017-0014