PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioremediation of petroleum contaminated sands with bacteria cultures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accidental oil spills at open sea is a common environmental problem. However, we are faced with a much more severe problem once the oil spill reaches the shoreline. Current oil spill combating practice is to collect manually the polluted sand and proceed with disposal or temporary storage in nearby sites. Addition of mixed bacterial cultures into petroleum contaminated sand was examined. Experiments with sand polluted by 5% (v/w) of crude oil were performed in sterile and non-sterile conditions to see the degradation potential of isolated cultures, their growth characteristics and possible antagonisms between supplemented microorganisms and natural microflora. During the experiments the oxygen demand was monitored. Correlation between high oxygen demand and high depletion of hydrocarbons was observed. The best TPH removal in sterile conditions was found in samples with the mixed cultures isolated from waste sludge from petroleum refinery Motor Oil Hellas (Korinth Refineries, Greece). For this culture concentration of hydrocarbons in sterile sand was 73.2% lower than in control sample. In non-sterile sand concentration of TPH after 14 days was 70.5% lower than in control (sterile sand) without bioaugmentation. The lowest depletion of hydrocarbons was observed in sample with addition of mixed culture (AM) of Alcanivorax borcumensis (DSM 11573) and Marinobacter hydrocarbonoclasticus (DSM 8798) (32.9%). Finally, the addition of artificial seawater and fertilizers had also a positive influence on contaminants depletion by naturally occurring microorganisms (48%).
PL
Powszechnym problemem środowiskowym są przypadkowe wycieki paliw na otwartym morzu. Z jeszcze bardziej uciążliwym problemem spotykamy się jednakże w momencie dotarcia wycieku do wybrzeża. Obecne praktyki rekultywacyjne polegają na zebraniu zanieczyszczonego piasku i jego usunięciu lub okresowym składowaniu na pobliskich terenach. Celem badań było określenie wpływu inokulacji mieszanymi kulturami bakteryjnymi piasku zanieczyszczonego surową ropą naftową. Badania prowadzono na piasku zanieczyszczonym 5% (v/w) surowej ropy naftowej w warunkach sterylnych i niesterylnych tak, aby zaobserwować zdolność wyizolowanych kultur do degradacji zanieczyszczenia, scharakteryzować ich wzrost oraz możliwe antagonizmy między wprowadzonymi mikroorganizmami a naturalną mikroflorą. Zaobserwowano dodatnią korelację miedzy ubytkiem tlenu i wysokim ubytkiem węglowodorów. Najwyższy stopień usunięcia TPH w warunkach sterylnych zaobserwowano w próbach z mieszaną kulturą wyizolowaną z osadu pochodzącego z rafinerii Motor Oil Hellas (Korinth Refineries, Grecja). Stężenie ropopochodnych w próbie z tą kulturą i sterylnym piaskiem było o 72.3% niższe niż w kontroli. W warunkach niesterylnych stężenie TPH po 14 dniach było niższe niż w kontroli (piasek sterylny) o 70.5%. Najniższy ubytek węglowodorów zaobserwowano w próbach zaszczepionych mieszaniną kultur (AM) zawierających Alcanivorax borcumensis (DSM 11573) i Marinobacter hydrocarbonoclasticus (DSM 8798) (32.9%). Wreszcie zaobserwowano, iż dodatek sztucznie spreparowanej wody morskiej i biogenów miały również pozytywny wpływ na ubytek zanieczyszczeń spowodowany działalnością autochtonicznych mikroorganizmów (48%).
Rocznik
Strony
105--114
Opis fizyczny
Bibliogr. 54 poz.
Twórcy
autor
autor
  • Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland, wioletta.przystas@polsl.pl
Bibliografia
  • 1. Epstein P.R., Selber J.; OIL - A Life cycle analysis of its health and environmental impacts, The Center for Health and the Global Environment Harvard Medical School, March 2002
  • 2. Alvinage E., Stoica D., Iversen K.; Oil Pollution in the Baltic Sea and the Effects on Fish and Fisheries - Something to worry about?, Environmental Studies, Aarhus University, 2000
  • 3. U.S. Congress, Office of Technology Assessment. Bioremediation for Marine Oil Spills-Background Paper, OTA-BP-O-70 Washington, DC: U.S. Government Printing Office, 1991
  • 4. Otremba Z., Toczek H. ; Degradation of Crude Oil Film on the Surface of Seawater: the Role of Luminous, Biological and Aqutorial Factors, Polish Journal of Environmental Studies Vol. 11, No. 5, 2002: p. 555-559
  • 5. Jones W.R:, Practical application of marine bioremediation, Current Opinion in Biotechnology 9, 1998; p. 300-304
  • 6. Piehler M.F., Swistak J.G., Pinckney J.L., Pearl H.W.; Stimulation of diesel fuel biodegradation by indigenous nitrogen fixing bacterial consortia, Microbial Ecology 38, 1999; p. 69-78
  • 7. Rowland A.P., Lindley D.K., Hall G.H., Rossall M.J., Wilson D.R., Benham D.G., Harrison A.F., Daniels R.E.; Effects of beach sand properties, temperature and rainfall on the degradation rates of oil in buried oil/beach sand mixtures, Environmental Pollution 109, 2000; p. 109-118
  • 8. Rahman K.S.M., Rahman T., Lakshmanaperumalsamy P., Banat I.M.; Occurrence of crude oil degrading bacteria in gasoline and diesel station soils, J. Basic Microbiol. 42, 4, 2002; p. 284-291
  • 9. Rahman K.S.M., Thahira-Rahman J., Lakshmanaperumalsamy P., Banat I.M:, Towards efficient crud oil degradation by a mixed bacterial consortium. Biosource Technology 85, 2002; p. 257-261
  • 10. Mohandass C., David J.J., Nair S., Loka Bharathi P.A., Chandramohan D:, Behavior of marine oil-degrading bacterial population in a continuous culture system, J. Mar. Biotechnol. 5, 1997; p. 168-171
  • 11. Diaz M.P., Grigson S.J. W, Peppiatt Ch.J., Burgess J.G.; Isolation and Characterization of Novel Hydrocarbon-Degrading Eurythaline Consortia from Crude oil and Mangrove Sediments, Marine Biotechnology 2, 2000; p.522-532
  • 12. Bachoon D.S., Araujo R., Molina M., Hudson R.E.; Microbial community dynamics and evaluation of bioremediation strategies in oil-impacted salt marsh sediment microcosms, Journal of Industrial Microbiology and Biotechnology 27, 2001; p.72-79
  • 13. Del’Arco J.P., Franca F.P.; Influence of oil contamination levels on hydrocarbon biodegradation in sandy sediment, Environmental Pollution 110, 2001; p.515-519
  • 14. Tarn N.F.Y., Guo C.L., Tau W.Y., Wong Y.S.; Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong, Marine Pollution Bulletin 45, 2002; p. 316-324
  • 15. Yang L., Lai C., Sheieh W.K.; Biodégradation of dispersed diesel fuel under high salinity conditions, Water Res. 34, no 13, 2000; p. 3303-3314
  • 16. Piepre D.H., Reineke W.; Engineering bacteria for bioremediation, Current Opinion in Biotechnology 11, 2000; p. 262-270
  • 17. Kolwzan B.; Assesment and choice of inoculants for the bioremediation of soil contaminated with petroleum products, Ochrona Środowiska 30, no 4, 2008; p. 3
  • 18. Molina M., Araujo R., Bond J.R.; Dynamics of Oil Degradation in Coastal Environments - Effect of bioremediation Products and Some Environmental Parameters, Proceedings of the 1995 U.S. EPA - Annual Symposium on Bioremediation of Hazardous Wastes, 1995; p. 32-34
  • 19. Kasai Y., Kishira ., Harayama S:, Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in marine environment, Applied and Environmental Microbiology, November 2002; p. 5625-5633
  • 20. Li G., Huang W, Lerner D.N., Zhang X:, Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil. Wat. Res. 34, Nol5; 2000, p. 3845-3853
  • 21. Aldrett S., Bonner J.S., Mills M.A., Aulenreith R.L., Stephens F.L.; Microbial degradation of crude oil in marine environments tested in a flask experiment, Wat. Res 31, No. 11, 1997; p. 2840-2848
  • 22. U.S. EPA. A citizen's guide to bioremediation, Solid Waste Emergency Response Agency (5102G), EPA 542-F-96-007, 1996
  • 23. Puskas K., Al-Awadhi N., Abdullah F., Literathy P.; Remediation of oil-contaminated sandy soil in a slurry reactor, Environment International 21, no 4, 1995; p. 413-421
  • 24. Vogel T.M.; Bioaugmentation as a soil bioremediation approach. Current Opinion in Biotechnology 7, 1996; p. 311-316
  • 25. Saner M., Bollier D., Schneider K, Bachofen R.; Mass transfer improvement of contaminants and nutrients in soil in a new type of closed bioreactor. Journal of Biotechnology 48, 1996; p. 25-35
  • 26. Garcia-Rivero M., Saucedo-Castaneda G., De Hoyos, Gutierrez-Rojas M.; Mass Transfer and hydrocarbon biodegradation of aged soil in slurry phase, Biotechnol. Prog. 18, 2002; p. 728-733
  • 27. Löser C., Seidel H., Hoffmann P., Zehnsdorf A.; Bioavailability of hydrocarbons during microbial remediation of a sandy soil, Appl. Microbiol. Biotechnol. 51, 1999; p. 105-111
  • 28. Rhykerd R.L., Weaver R. W., McInnes K.; Influence of salinity on bioremediation of oil in soil, Environmental Pollution vol. 90 no. 1, 1995; p. 127-130
  • 29. Diaz P.M., Boyd K.G., Grinson S.J.W., Burgess J.G:, Biodegradation of Crude Oil across a Wide Range of Salinities by an Extremely Halotolerant Bacterial Consortium MPD-M, Immobilized onto Polypropylene Fibries, Biotechnology and Bioengineering, vol. 79, no. 2, 2002; p. 145-153
  • 30. Margesin R., Schinner F.; Potenctial of halotolerant and halophilic microorganisms for biotechnology, Extremophiles 5, 2001; p. 73-83
  • 31. Shelton M.E., Chapman P.J., Foss S.S., Fisher W.S.; Degradation of weathered oil by mix marine bacteria and the toxicity of accumulated water-soluble material to two marine crustacea, Arch. Environ. Contam. Toxicol. 36, 1999; p. 13-20
  • 32. Yakimov M.M., Golynshin P.N., Moore E.R.B., Abraham W.R., Lunsdorf H., Timmis K.N.; Alcanivorax borkumensis gen. Nov., sp.nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium, International Journal of Systematic Bacteriology 48, 1998; p. 339-348
  • 33. Gauthier M.J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.C.; Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium, Int. J. Syst. Bacteriol. 42(4), 1992; p. 568-76
  • 34. Dutta T.T., Harayama S.; Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. Strain MBIC 4326, Applied and Environmental Microbiology, vol. 67, no. 4, 2001; p. 1970-1974
  • 35. Watanabe K.; Microorganisms relevant to bioremediation. Current Opinion in Biotechnology 12, 2001; p.237-241
  • 36. Korda A., Santas P., Tenente A., Santas R.; Petroleum hydrocarbon bioremediation: sampling and analytical techniques, in situ treatments and commercial microorganisms currently used, Appl. Microbiol. Biotechnol. 48, 1997; p. 677-686
  • 37. Huysman F., Verstraete W.; Water-facilitated transport of bacteria in saturated soil columns; influence of cell surface hydrophobicity and soil properties. Soil Biol. Biochem. 25, 1993; p. 83-90
  • 38. Mehmannavaz R., Prasher S.O., Ahmad D.; Cell surface properties of rhizobial strains isolated from soils contaminated with hydrocarbon: hydrophobicity and adhesion to sandy soil. Process Biochemistry 36, 2001; p. 683-688
  • 39. Jain D.K., Collins-Thompson D.L., Lee H., Trevors J. T.; A drop-collapsing test for screening surfactant-producing microorganisms, Journal of Microbiological Methods 13, Issue 4, 1991; p. 271-279
  • 40. Lindum P.W., Anthoni U., Christophersen C., Eberl L., Molin S., Givskov M.; N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required from swarming motility of Serratia liquefaciens MG1, J. Bacteriol. 180, 1998; p. 6384-6388
  • 41. Abbondanza F, et al.; Microbial degradation of PAHs in soils - bioaugmentation study in slurry reactor, Proceedings of the Second European Bioremediation Conference, Chania - Crete, Greece 2003; p. 512-515
  • 42. Fiuza A., Vila C.; Bioremediation of sandy soil polluted by petroleum hydrocarbons - respirometric studies, Proceedings of the Second European Bioremediation Conference, Chania - Crete, Greece 2003; p. 55-58
  • 43. Aichberger H., Braun R., Loibner A.P.; Hydrocarbon contamination of the vadose zone - preliminary testing to predict remediation performance, Proceedings of the Second European Bioremediation Conference, Chania - Crete, Greece 2003; p.67-70
  • 44. Michel E.M.B., Sokolovska I., Agathos S.N.; Biodegradation of diesel fuel in soil at low temperature by Rhodococcus erythropolis, Proceedings of the Second European Bioremediation Conference, Chania - Crete, Greece 2003; p. 59-62
  • 45. Löser C., Seidel H., Zehnsdorf A., Stottmeister U.; Microbial degradation of hydrocarbons in soil during aerobic/anaerobic changes and under purely aerobic conditions, Appl. Microbiol. Biotechnol. 49, 1998; p. 631-636
  • 46. Venosa D.A.D., et al.; Bioremediation of crude oil intentionally released on the shoreline of flower beach, Delaware, Proceedings of the 1995 U.S. EPA - Annual Symposium on Bioremediation of Hazardous Wastes, 1995; p. 29-31
  • 47. Oh Young-Sook, Sim Doo-Seup, Kim Sang-Jin; Effects of Nutrients on Crude Oil Biodegradation in the Upper Intertidial Zone, Marine Pollution Bulletin 42 No. 12, 2001; p. 1367-1372
  • 48. Singer M.E., Finnerty W.R.; Microbial Metabolism of Straight-Chain and Branched Alkanes, Petroleum Microbiology edited by M. Atlas, Macmalian Publishing Company, United States 1984; p. 1-59
  • 49. Zhang Y., Miller R.M.; Enhanced octadecane dispersion and biodegradation by a Pseudomonas Rhamnolipid surfactant (biosurfactant), Applied and Environmental Microbiology 58/10, 1992; p. 3276-3282
  • 50. Couto H.J.B., Massarani G., Biscaia E.C., Sant'Anna G.L.; Remediation of sandy soils using surfactant solutions and foams. Journal of Hazardous Materials 164, 2009; p. 1325-1334
  • 51. Seok-Whan Kang, Young-Bum Kim, Jae-Dong Shin, Eun-Ki Kim; Enhanced Biodegradation of Hydrocarbons in Soil by Microbial Biosurfactant, Sophorolipid, Appl Biochem Biotechnol 160, 2010; p. 780-790
  • 52. Schippers C., Geβner K., Müller T., Scheper T.; Microbial degradation of phenanthrene by addition of a sophorolipid mixture, Journal of Biotechnology 83,2000; p. 189-198
  • 53. Paria S.; Surfactant-enhanced remediation of organic contaminated soil and water. Advances in Colloid and Interface Science 138, 2008; p. 24-58
  • 54. Juneson Ch., Ward O.P., Singh A.; Biodegradation of bis (2-ethylhexyl)phthalate in a soil slurry sequencing batch reactor. Process Biochemistry 37, 2001; p. 305-313
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL2-0025-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.