Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-extensive statistical physics approach to fault population distribution. A case study from the southern Hellenic arc (Central Crete)

Warianty tytułu
Języki publikacji
Fault population statistics play a key role in the understanding of any statistical seismicity approach. In the present work a non-extensive statistical physics approach is formulated and tested for the local fault length distribution. The approach is composed of the following parts: (i) Tsallis entropy, Sq , (ii) maximization of the Tsallis entropy under appropriate constrains, and (iii) derivation of the cumulative distribution function (CDF) of the fault length population. This model is tested using fault length data from the Central Crete graben in front of the Hellenic arc and estimated a thermodynamic q parameter equal to 1.16, which supports the conclusion that the fault system in Central Crete graben is a sub-extensive one.
Opis fizyczny
Bibliogr. 53 poz.
  • Earth Sciences Department, University College London, London, UK; Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology, Crete, Greece,
  • Abe, S., and G.B. Bagci (2005), Necessity of q-expectation value in nonextensive statistical mechanics, Phys. Rev. E 71, 1, 016139.
  • Abe, S., and A.K. Rajagopal (2000a), Rates of convergence of non-extensive statistical distributions to Lévy distributions in full and half-spaces, J. Phys. A: Math. Gen. 33, 48, 8723-8732.
  • Abe, S., and A.K. Rajagopal (2000b), Microcanonical foundation for systems with power-law distributions, J. Phys. A: Math. Gen. 33, 48, 8733-8738.
  • Abe, S., and N. Suzuki (2003), Law for the distance between successive earthquakes, J. Geophys. Res. 108, B2, 2113-2117.
  • Abe, S., and N. Suzuki (2005), Scale-free statistics of time interval between successive earthquakes, Physica A 350, 2-4, 588-596.
  • Ackermann, R.V., R.W. Schlische, and M. Withjack (2001), The geometric and statistical evolution of normal fault systems: an experimental study of the effects of mechanical layer thickness on scaling laws, J. Struct. Geol. 23, 11, 1803-1819.
  • Bak, P., C. Tang, and K. Wiesenfeld (1987), Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59, 4, 381-384.
  • Beck, C., and F. Schlögl (1997), Thermodynamics of Chaotic Systems: An Introduction, Cambridge University Press, Cambridge.
  • Bohnhoff, M., H.P. Harjes, and T. Meier (2005), Deformation and stress regimes in the Hellenic subduction zone from focal mechanisms, J. Seismol. 9, 3, 341-366.
  • Chaumillon, E., and J. Mascle (1997), From foreland to forearc domains: New multichannel seismic reflection survey of the Mediterranean Ridge accretionary complex (Eastern Mediterranean), Mar. Geol. 138, 3-4, 237-259.
  • Cladouhos, T.T., and R. Marrett (1996), Are fault growth and linkage models consistent with power-law distributions of fault lengths?, J. Struct. Geol. 18, 2-3, 281-293.
  • Cowie, P.A., and C.H. Scholz (1992a), Displacement-length scaling relationship for faults: data synthesis and discussion, J. Struct. Geol. 14, 10, 1149-1156.
  • Cowie, P.A., and C.H. Scholz (1992b), Growth of faults by accumulation of seismic slip, J. Geophys. Res. 97, B7, 11085-11095.
  • Cowie, P.A., and C.H. Scholz (1992c), Physical explanation for the displacementlength relationship of faults using a post-yield fracture mechanics model, J. Struct. Geol. 14, 10, 1133-1148.
  • Cowie, P.A., C. Vanneste, and D. Sornette (1993), Statistical physics model for the spatiotemporal evolution of faults, J. Geophys. Res. 98, B12, 21809-21821.
  • Cowie, P.A., A. Malinverno, W.B.F. Ryan, and M.H. Edwards (1994), Quantitative fault studies on the East Pasific Rise: A comparison of sonar imaging techniques, J. Geophys. Res. 99, B8, 15205-15218.
  • Cowie, P.A., D. Sornette, and C. Vanneste (1995), Multifractal scaling properties of a growing fault population, Geophys. J. Int. 122, 2, 457-469.
  • Delibasis, N., M. Ziazia, N. Voulgaris, T. Papadopoulos, G. Stavrakakis, D. Papanastassiou, and G. Drakatos (1999), Microseimic activity and seismotectonics of Heraklion area (central Crete Island, Greece), Tectonophysics 308, 1-2, 237-248.
  • Goto, K., and K. Otsuki (2004), Size and spatial distribution of fault populations: Empirically synthesized evolution laws for the fractal geometries, Geophys. Res. Lett. 31, 5, L05601.
  • Gupta, A., and C.H. Scholz (2000), A model of normal fault interaction based on observations and theory, J. Struct. Geol. 22, 7, 865-879.
  • Hatton, C.G., I.G. Main, and P.G. Meredith (1994), Non-universal scaling of fracture length and opening displacement, Nature 367, 160-162.
  • IGME (Institouton Geologikon & Metalleutikon Ereunon, Greece) (1989), Seismotectonic Map of Greece with Seismological Data. Scale 1:500 000, Institute of Geology and Mineral Exploration, Athens.
  • Ishikawa, M., and K. Otsuki (1995), Effects of strain gradients on asymmetry of experimental normal fault systems, J. Struct. Geol. 17, 7, 1047-1053.
  • Kokinou, E., M. Moisidi, I. Tsanaki, E. Tsakalaki, E. Tsiskaki, A. Sarris, and F. Vallianatos (2008), A seismotectonic study for the Heraklion basin in Crete (Southern Hellenic arc, Greece), Int. J. Geology 2, 9-16.
  • Le Pichon, X., and J. Angelier (1979), The Hellenic arc and trench system: A key to the neotectonic evolution of the Eastern Mediterranean area, Tectonophysics 60, 1-2, 1-42.
  • Lyra, M.L., and C. Tsallis (1998), Nonextensivity and multifractality in low-dimensional dissipative systems, Phys. Rev. Lett. 80, 1, 53-56.
  • Main, I.G., P.G. Meredith, P.R. Sammonds, and C. Jones (1990), Influence of fraktal flaw distributions on rock deformation in the brittle field, Geol. Soc. Lond. Spec. Publ. 54, 81-96.
  • Mandelbrot, B.B. (1983), The Fractal Geometry of Nature, Freeman Press, New York.
  • McKenzie, D. (1972), Active tectonics of the Mediterranean region, Geophys. J. Roy. Astr. Soc. 30, 2, 109-185.
  • McKenzie, D. (1978), Active tectonics of the Alpine–Himalayan belt: the Aegean Sea and surrounding regions, Geophys. J. Roy. Astr. Soc. 55, 1, 217-254.
  • Peacock, D.C.P., and D.J. Sanderson (1994), Strain and scaling of faults in the chalk at Flamborough Head, U.K., J. Struct. Geol. 16, 1, 97-107.
  • Prigogine, I. (1980), From Being to Becoming: Time and Complexity in Physical Sciences, Freeman Press, San Francisco.
  • Reilinger, R., S. McClusky, D. Paradissis, S. Ergintav, and P. Vernant (2010), Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone, Tectonophysics 488, 1-4, 22-30.
  • Scholz, C.H., and P.A. Cowie (1990), Determination of total strain from faulting using slip measurements, Nature 346, 837-839.
  • Scholz, C.H., and B.B. Mandelbrot (1989), Fractals in Geophysics, Birkhaüser, Basel.
  • Shaw, B., and J. Jackson (2010), Earthquake mechanisms and active tectonics of the Hellenic subduction zone, Geophys. J. Int. 181, 2, 966-984.
  • Silva, R., G.S. França, C.S. Vilar, and J.S. Alcaniz (2006), Nonextensive models for earthquakes, Phys. Rev. E 73, 2, 026102.
  • Sotolongo-Costa, O., and A. Posadas (2004), Fragment-asperity interaction model for earthquakes, Phys. Rev. Lett. 92, 4, 048501.
  • Spyropoulos, C., W.J. Griffith, C.H. Scholz, and B.E. Shaw (1999), Experimental evidence for different strain regimes of crack populations in a clay model, Geophys. Res. Lett. 26, 8, 1081-1084.
  • Telesca, L. (2010a), Nonextensive analysis of seismic sequences, Physica A 389, 9, 1911-1914.
  • Telesca, L. (2010b), A non-extensive approach in investigating the seismicity of L’Aquila area (central Italy), struck by the 6 April 2009 earthquake (ML =5.8), Terra Nova 22, 2, 87-93.
  • Ten Veen, J.H., and P.T. Meijer (1998), Late Miocene to recent tectonic evolution of Crete (Greece): geological observations and model analysis, Tectonophysics 298, 1-3, 191-208.
  • Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487.
  • Tsallis, C. (1999), Nonextensive statistics: theoretical, experimental and computational evidences and connections, Braz. J. Phys. 29, 1.
  • Tsallis, C. (2001), Nonextensive statistical mechanics and thermodynamics: Historical background and present status. In: S. Abe and Y. Okamoto (eds.), Non extensive Statistical Mechanics and Its Applications, Springer, Berlin.
  • Tsallis, C. (2009), Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, Springer, Berlin.
  • Tsallis, C., R.S. Mendes, and A.R. Plastino (1998), The role of constraints within generalized nonextensive statistics, Physica A 261, 3-4, 534-554.
  • Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards Earth Syst. Sci. 9, 1, 211-216.
  • Vallianatos, F. (2011), A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field, Physica A 390, 10, 1773-1778.
  • Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics?, Physica A 389, 21, 4989-4993.
  • Vilar, C.S., G.S. França, R. Silva, and J.S. Alcaniz (2007), Nonextensivity in geological faults?, Physica A 377, 1, 285-290.
  • Walsh, J.J., and J. Watterson (1992), Populations of faults and fault displacement and their effects on estimates of fault-related regional extension, J. Struct. Geol. 14, 6, 701-712.
  • Wessel, P., and W.H.F. Smith (1998), New, improved version of Generic Mapping Tools released, Eos Trans. AGU 79, 47, 579.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.