Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ground and indoor radon measurements in a geothermal area

Warianty tytułu
Języki publikacji
Geothermally active sites compared to a relatively passive site (no geothermal activity( contain much higher radon in the soil. As expected, the maximum soil radon content is at or near the major fracture zone where hot water emanates to the surface. Thus, buildings in geothermal sites nearby or at top of cracks that facilitate hot-water transfer to the surface may be extremely dangerous in terms of high radon concentrations and this situation may pose a big threat for the inhabitants. Controlled aeration of such high-risk buildings must be carefully and continuously conducted.
Opis fizyczny
Bibliogr. 12 poz.
  • Apte, M.G., P.N. Price, A.V. Nero, and K.L. Revzan (1999), Predicting New Hampshire indoor radon concentrations from geologic information and other covariates, Environ. Geol. 37, 3, 181-194.
  • Cui, L.P. (1990), Radiometric methods in regional radon hazard mapping, Nucl. Geophys. 4, 3, 353-364.
  • Hudak, P.F. (1996), Distribution of indoor radon concentrations and uraniumbearing rocks in Texas, Environ. Geol. 28, 1, 29-33.
  • İnan, S., T. Akgül, C. Seyis, R. Saatçılar, S. Baykut, S. Ergintav, and M. Baş (2008), Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity, J. Geophys. Res. 113, B03401.
  • Kemski, J., R. Klingel, A. Siehl, and R. Stegemann (2005), Radon transfer from ground to houses and prediction of indoor radon in Germany based on geological information. In: J.P. McLaughlin, E.S. Simopoulos, and F. Steinhäusler (eds.), The Natural Radiation Environment VII, Ser. Radioactivity in the Environment 7, Seventh International Symposium on the Natural Radiation Environment (NRE-VII), Rhodes, Greece, 20-24 May 2002, Elsevier, 820-832.
  • Ministry of Environment, Finland (2003), Finnish Building Code. D2: Indoor Climate and Ventilation, Helsinki.
  • Morland, G., T. Strand, L. Furuhaug, H. Skarphagen, and D. Banks (1998), Radon in quaternary aquifers related to underlying bedrock geology, Ground Water 36, 1, 143-146.
  • Nazaroff, W.W. (1992), Radon transport from soil to air, Rev. Geophys. 30, 2, 137-160.
  • Nazaroff, W.W., B.A. Moed, and R.G. Sextro (1988), Soil as a source of indoor radon: generation, migration, and entry. In: W.W. Nazaroff and A.V. Nero (eds.), Radon and its Decay Products in Indoor Air, Wiley Interscience, New York, 57-112.
  • Quindós Poncela, L.S., P.L. Fernández, J. Gómez Arozamena, C. Sainz, J.A. Fernández, E. Suarez Mahou, J.L. Martin Matarranz, and M.C. Cascón (2004), Natural gamma radiation map (MARNA) and indoor radon levels in Spain, Environ. Int. 29, 8, 1091-1096.
  • Shi, X., D.J. Hoftiezer, E.J. Duell, and T.L. Onega (2006), Spatial association between residential radon concentration and bedrock types in New Hampshire, Environ. Geol. 51, 1, 65-71.
  • UNSCEAR (1993), Sources and effects of ionizing radiation, UNSCEAR 1993 Report, United Nations Scientific Committee on the Effects of Atomic Radiation, New York.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.