Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Toward a unified solid state theory for pre-earthquake signals

Warianty tytułu
Języki publikacji
Many different non-seismic pre-earthquake signals have been reported but there is great uncertainty about their origin, their correlation to each other and to the impending seismic event. The discovery of stressactivated electric currents in rocks provides a possible explanation. Stresses activate electronic charge carriers, namely defect electrons in the oxygen anion sublattice, equivalent to O- in a matrix of O2-, also known as positive holes. These charge carriers pre-exist in unstressed rocks in a dormant, electrically inactive state as peroxy links, O3Si-OO-SiO3, where two O- are tightly bound together. Under stress dislocations sweep through the mineral grains causing the peroxy links to break. Positive holes, thus generated, flow down stress gradients, constituting an electric current with attendant magnetic field variations and EM emissions. The positive holes accumulate at the surface, creating electric fields, strong enough to field-ionize air molecules. They also recombine leading to a spectroscopically distinct IR emission seen in laboratory experiments and night-time infrared satellite images. In addition positive holes interact with radon in the soil, affecting the radon emanation.
Opis fizyczny
Bibliogr. 129 poz.
  • NASA Ames Research Center, Moffett Field, CA, USA; Department of Physics, San Jose State University, San Jose, CA, USA; Carl Sagan Center, SETI Institute, Mountain View, CA, USA,
  • Araiza-Quijano, M.R., and G. Hernández-del-Valle (1996), Some observations of atmospheric luminosity as a possible earthquake precursor, Geofisica Int. 35, 403-408.
  • Bai, L.-P., J.-G. Du, W. Liu, and W.-G. Zhou (2002), The experimental studies on electrical conductivities and P-wave velocities of anorthosite at high pressure and high temperature, Acta Seism. Sinica 15, 6, 667-676.
  • Balk, M., M. Bose, G. Ertem, D.A. Rogoff, L.J. Rothschild, and F.T. Freund (2009), Oxidation of water to hydrogen peroxide at the rock-water interface due to stress-activated electric currents in rocks, Earth Planet. Sci. Lett. 283, 1-4, 87-92.
  • Bilitza, D. (2001), International Reference Ionosphere 2000, Radio Sci. 36, 2, 261-275.
  • Bishop, J.R. (1981), Piezoelectric effects in quartz-rich rocks, Tectonophysics 77, 3-4, 297-321.
  • Bleier, T., C. Dunson, M. Maniscalco, N. Bryant, R. Bambery, and F.T. Freund (2009), Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5.4 earthquake, Nat. Hazards Earth Syst. Sci. 9, 585-603.
  • Brace, W.F. (1975), Dilatancy-related electrical resistivity changes in rocks, Pure Appl. Geophys. 113, 1, 207-217.
  • Brace, W.F., B.W. Paulding, and C. Scholz (1966), Dilatancy in the fracture of crystalline rocks, J. Geophys. Res. 71, 16, 3939-3953.
  • Chen, Y.L., J.Y. Chuo, J.Y. Liu, and S.A. Pulinets (1999), A statistical study of ionospheric precursors of strong earthquakes in the Taiwan area, 24th General Ass. URSI, URSI, 745 pp.
  • Chen, Y.I., J.Y. Liu, Y.B. Tsai, and C.S. Chen (2004), Statistical tests for preearthquake ionospheric anomaly, Terr. Atmos. Ocean. Sci. 15, 3, 385-396.
  • Chyi, L.L., C.Y. Chou, F.T. Yang, and C.H. Chen (2002), Automated radon monitoring of seismicity in a fault zone, Geofisica Int. 41, 507-511.
  • Conklin, A.R., Jr. (ed.) (2006), Introduction to Soil Chemistry. Analysis and Instrumentation, Wiley Interscience, New York.
  • Console, R., D. Pantosti, and G. D'Addezio (2002), Probabilistic approach to earthquake prediction, Ann. Geophys. 45, 6, 723-731.
  • Depuev, V., and T. Zelenova (1996), Electron density profile changes in a preearthquake period, Adv. Space Res. 18, 6, 115-118.
  • Derr, J.S. (1986), Rock mechanics: Luminous phenomena and their relationship to rock fracture, Nature 321, 470-471.
  • Dobrovolsky, I.P., S.I. Zubkov, and V.I. Miachkin (1979), Estimation of the size of earthquake preparation zones, Pure Appl. Geophys. 117, 5, 1025-1044.
  • Duba, A., and S. Constable (1993), The electrical conductivity of a lherzolite, J. Geophys. Res. 98, B7, 11885-11899.
  • Dunajecka, M.A., and S.A. Pulinets (2005), Atmospheric and thermal anomalie observed around the time of strong earthquakes in México, Atmósfera 18, 236-247.
  • Finkelstein, D., R.D. Hill, and J.R. Powell (1973), The piezoelectric theory of earthquake lightning, J. Geophys. Res. 78, 6, 992-993.
  • Freund, F. (1985), Conversion of dissolved "water" into molecular hydrogen and peroxy linkages, J. Non-Cryst. Solids 71, 1-3, 195-202.
  • Freund, F. (2002), Charge generation and propagation in igneous rocks, J. Geodyn. 33, 4-5, 543-570.
  • Freund, F. (2003), On the electrical conductivity structure of the stable Continental crust, J. Geodyn. 35, 3, 353-388.
  • Freund, F.T. (2007a), Pre-earthquake signals – Part I: Deviatoric stresses turn rocks into a source of electric currents, Nat. Hazards Earth Syst. Sci. 7, 1-7.
  • Freund, F.T. (2007b), Pre-earthquake signals – Part II: Flow of battery currents in the crust, Nat. Hazards Earth Syst. Sci. 7, 543-548.
  • Freund, F.T. (2009), Stress-activated positive hole charge carriers in rocks and the generation of pre-earthquake signals. In: M. Hayakawa (ed.), Electromagnetic Phenomena Associated with Earthquakes, Research Signpost, New Dehli, 41-96.
  • Freund, F., and D. Sornette (2007), Electro-magnetic earthquake bursts and critical rupture of peroxy bond networks in rocks, Tectonophysics 431, 1-4, 33-47.
  • Freund, F., M.M. Freund, and F. Batllo (1993), Critical review of electric al conductivity measurements and charge distribution analysis of magnesium oxide, J. Geophys. Res. 98, B12, 22209-22229.
  • Freund, F.T., A. Takeuchi, and B.W.S. Lau (2006), Electric currents streaming out of stressed igneous rocks – A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth 31, 4-9, 389-396.
  • Freund, F.T., A.Takeuchi, B.W.S. Lau, A. Al-Manaseer, C.C. Fu, N.A. Bryant, and D. Ouzounov (2007), Stimulated infrared emission from rocks: Assessing a stress indicator, eEarth 2, 7-16.
  • Freund, F.T., I.G. Kulahci, G. Cyr, J. Ling, M. Winnick, J. Tregloan-Reed, and M.M. Freund (2009), Air ionization at rock surfaces and pre-earthquake signals, J. Atmos. Sol.-Terr. Phys. 71, 17-18, 1824-1834.
  • Galli, I. (1910), Raccolta e classifzione di fenomeni luminosi osservati nei terremoti, Boll. Soc. Sism. Ital. 14, 221-448.
  • Geller, R.J., D.D. Jackson, Y.Y. Kagan, and F. Mulargia (1997), Earthquakes Carnot be predicted, Science 275, 5306.
  • Gerber, R.B. (2004), Formation of novel rare-gas molecules in low-temperature matrices, Ann. Rev. Phys. Chem. 55, 55-78.
  • Glover, P.W.J., and F.J. Vine (1992), Electrical conductivity of carbonbearing granulite at raised temperatures and pressures, Nature 360, 723-726.
  • Glover, P.W.J., and F.J. Vine (1994), Electrical conductivity of the continental crust, Geophys. Res. Lett. 21, 22, 2357-2360.
  • Gringel, W., J.M. Rosen, and D.J. Hofmann (1986), Electrical structure from 0 to 30 kilometers. In: The Earth’s Electrical Environment, National Academic Press, Washington, DC, 166-182.
  • Griscom, D.L. (1990), Electron spin resonance, Glass Sci. Technol. 4B, 151-251.
  • Grunewald, E.D., and R.S. Stein (2006), A new 1649-1884 catalog of destructive earthquakes near Tokyo and implications for the long-term seismic process, J. Geophys. Res. 111, B12306.
  • Guo, G., and B. Wang (2008), Cloud anomaly before Iran earthquake, Int. J. Remote Sensing 29, 7, 1921-1928.
  • Hadley, K. (1975), Azimuthal variation of dilatancy, J. Geophys, Res. 80, 35, 4845-4850.
  • Hattori, K., K. Wadatsumi, R. Furuya, N. Yada, I. Yamamoto, K. Ninagawa, Y. Ideta, and M. Nishihashi (2008), Variation of radioactive atmospheric ion concentration associated with large earthquakes, AGU Fall Meeting 2008, San Francisco, CA.
  • Hayakawa, M. (2007), VLF/LF radio sounding of ionospheric perturbations associated with earthquakes, Sensors 7, 7, 1141-1158.
  • Hayakawa, M., A.V. Shvets, and S. Maekawa (2005), Subionospheric LF monitoring of ionospheric perturbations prior to the Tokachi-oki earthquake and a possible mechanism of lithosphere-ionosphere coupling, Adv. Polar Upper Atmos. Res. 19, 42-54.
  • Hayakawa, M., S. Pulinets, M. Parrot, and O.A. Molchanov (2006), Recent Progress in seismoelectromagnetics and related phenomena, Phys. Chem. Earth 31, 4-9, 129-131.
  • Hedervari, P., and Z. Noszticzius (1985), Recent results concerning earthquake lights, Ann. Geophys. 3, 6, 705-708.
  • Hollerman, W.A., B.L. Lau, R.J. Moore, C.A. Malespin, N.P. Bergeron, F.T. Freund, and P.J. Wasilewski (2006), Electric currents in granite and gabbro generated by impacts up to 1 km/sec, AGU Fall Meeting 2006, San Francisco.
  • Hoppel, W.A., R.V. Anderson, and J.C. Willett (1986), Atmospheric electricity in the planetary boundary layer. In: The Earth’s Electrical Environment, National Academic Press, Washington, DC, 149-165.
  • İnan, S., C. Seyis, N. Görür, S. Ergintav, R. Saatçilar, M. Bas, K. Cuff, D. Karakas, H. Yakan, S. Akar, A. Belgen, R. Çakmak, L. Kurt, S. Canan, R. Kafarov, and S. Çetin (2003), Radon gas activity: A possible earthquake precursor in the Marmara region (NW Turkey), The 1st Intern. Workshop on "Earthquake Prediction", ESC, Athens, Greece.
  • İnan, S., T. Akgül, C. Seyis, R. Saatçılar, S. Baykut, S. Ergintav, and M. Baş (2008), Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity, J. Geophys. Res. 113, B03401.
  • Johnston, M.J.S. (1997), Review of electric and magnetic fields accompanying seismic and volcanic activity, Surv. Geophys. 18, 5, 441-476.
  • Kathrein, H., and F. Freund (1983), Electrical conductivity of magnesium oxide single crystal below 1200 K, J. Phys. Chem. Solids 44, 3, 177-186.
  • Kazatchenko, E., M. Markov, and A. Mousatov (2004), Joint modeling of acoustic velocities and electrical conductivity from unified microstructure of rocks, J. Geophys. Res. 109, B01202.
  • King, B.V., and F. Freund (1984), Surface charges and subsurface space-charge distribution in magnesium oxide containing dissolved traces of water, Phys. Rev. B 29, 5814-5824.
  • King, C.-Y. (1980), Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes, J. Geophys. Res. 85, B6, 3065-3078.
  • King, C.-Y. (1983), Earthquake prediction: Electromagnetic emissions before earthquakes, Nature 301, 377.
  • Kolvankar, V.G. (2001), Earthquake sequence of 1991 from Valsad region, Guajrat, Report BARC-2001/E/006, Bhabha Atomic Research Centre, Seismology Div., Mumbai, India.
  • Korneev, V. (2010), Seismicity precursors for active monitoring of earthquakes. In: J. Kasahara, V. Korneev, and M. Zhdanov (eds.), Active Geophysical Monitoring, Vol. 40, Ser. Handbook of Geophysical Exploration: Seismic Exploration, 5-28.
  • Li, W.-K., G.-D. Zhou, and T.C.W. Mak (2008), Advanced Structural Inorganic Chemistry, International Union of Crystallography, Oxford University Press, 688 pp.
  • Liperovsky, V.A., O.A. Pokhotelov, E.V. Liperovskaya, M. Parrot, C.-V. Meister, and O.A. Alimov (2000), Modification of sporadic E-layers caused by seismic activity, Surv. Geophys. 21, 5-6, 449-486.
  • Liu, J.Y., Y. Chuo, S. Shan, Y. Tsai, Y. Chen, S. Pulinets, and S.B. Yu (2004), Preearthquake ionospheric anomalies registered by continuous GPS TEC measurements, Ann. Geophys. 22, 1585-1593.
  • Liu, J.Y., Y.I. Chen, Y.J. Chuo, and C.S. Chen (2006), A statistical investigation of preearthquake ionospheric anomaly, J. Geophys. Res. 111, A05304.
  • Lockner, D.A., M.J.S. Johnston, and J.D. Byerlee (1983), A mechanism to explain the generation of earthquake lights, Nature 302, 28-33.
  • Losseva, T.V., and I.V. Nemchinov (2005), Earthquake lights and rupture processes, Nat. Hazard Earth Syst. Sci. 5, 649-656.
  • Lu, D. (1988), Impending Earthquake Prediction, Jinangsu Science and Publishing House, Nanjing, China.
  • Mack, K. (1912), Das süddeutsche Erdbeben vom 16. November 1911, Abschnitt VII: Lichterscheinungen, Würtembergische Jahrbücher für Statistik and Landeskunde, Stuttgart.
  • Maekawa, S., T.Horie, T. Yamauchi, T. Sawaya, M. Ishikawa, M. Hayakawa, and H. Sasaki (2006), A statistical study on the effect of earthquakes on the ionosphere, based ont he subionospheric LF propagation data in Japan, Ann. Geophys. 24, 2219-2225.
  • Manna, S.S., and B.K. Chakrabarti (1987), Dielectric breakdown in the presence of random conductors, Phys. Rev. B 36, 4078-4081.
  • Mulargia, F., and R.J. Geller (eds.) (2003), Earthquake Science and Seismic Risk Reduction, NATO Science Series, Kluwer Academic, Dordrecht.
  • Nagarajaa, K., B.S.N. Prasad, M.S. Madhava, M.S. Chandrashekara, L. Paramesh, J. Sannappa, S.D. Pawar, P. Murugavel, and A.K. Kamra (2003), Radon and its short-lived progeny: Variations near the ground, Radiat. Meas. 36, 1-6, 413-417.
  • Nur, A. (1974), Matsushiro, Japan, earthquake swarm: Confirmation of the dilatancy-fluid diffusion model, Geology 2, 5, 217-221.
  • Ogawa, T., and H. Utada (2000), Coseismic piezoelectric effects due to a dislocation: 1. An analytic far and early-time field solution in a homogeneous whole space, Phys. Earth Planet. Int. 121, 3-4, 273-288.
  • Omori, Y., H. Nagahama, Y. Kawada, Y. Yasuoka, T. Ishikawa, S. Tokonami, and M. Shinogi (2009), Preseismic alteration of atmospheric electric al conditions due to anomalous radon emanation, Phys. Chem. Earth 34, 6-7, 435-440.
  • Ondoh, T. (2003), Anomalous sporadic-E layers observed before M 7.2 Hyogo-ken Nanbu earthquake; Terrestrial gas emanation model, Adv. Polar Upper Atmos. Res. 17, 96-108.
  • Ouellet, M. (1990), Earthquake lights and seismicity, Nature 348, 492.
  • Ouzounov, D., and F. Freund (2004), Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data, Adv. Space Res. 33, 3, 268-273.
  • Ouzounov, D., N. Bryant, T. Logan, S. Pulinets, and P. Taylor (2006), Satellite thermal IR phenomena associated with some of the major earthquakes in 1999-2003, Phys. Chem. Earth 31, 4-9, 154-163.
  • Oyama, K.I., Y. Kakinami, J.Y. Liu, M. Kamogawa, and T. Kodama (2008), Reduction of electron temperature in low-latitude ionosphere at 600 km before and after large earthquakes, J. Geophys. Res. 113, A11317.
  • Parkhomenko, E.I., and A.T. Bondarenko (1986), Electrical conductivity of rocks at high pressures and temperatures, NASA, Washington, D.C., 292 pp.
  • Patra, H.P., and S.K. Nath (1999), Schumberger Geolectric Sounding in Ground Water (Principles, Interpretation and Application), Oxford and IBH Publishing Co., New Delhi.
  • Pulinets, S.A. (2007), Natural radioactivity, earthquakes, and the ionosphere, EOS 88, 20, 217-218.
  • Pulinets, S.A. (2009), Physical mechanism of the vertical electric field generation over active tectonic faults, Adv. Space Res. 44, 6, 767-773.
  • Pulinets, S.A., A. Leyva Contreras, G. Bisiacchi-Giraldi, and L. Ciraolo (2005), Total electron content variations in the ionosphere before the Colima, Mexico, earthquake of 21 January 2003, Geofisica Int. 44, 4, 369-377.
  • Pulinets, S.A., D. Ouzounov, L. Ciraolo, R. Singh, G. Cervone, A. Leyva, M. Dunajecka, A.V. Karelin, K.A. Boyarchuk, and A. Kotsarenko (2006), Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003, Ann. Geophys. 24, 835-849.
  • Qian, F., Y. Zhao, M. Yu, Z. Wang, X. Liu, and S. Chang (1983), Geoelectric resistivity anomalies before earthquakes, Scientia Sinica B 26, 326-336.
  • Qian, F.Y., B.R. Zhao, W. Qian, J. Zhao, S.G. He, H.K. Zhang, S.Y. Li, S.K. Li, G.L. Yan, C.M. Wang, Z.K. Sun, D.N. Zhang, J. Lu, P. Zhang, G.J. Yang, J.L. Sun, C.S. Guo, Y.X. Tang, J.M. Xu, K.T. Xia, H. Ju, B.H. Yin, M. Li, D.S. Yang, W.L. Qi, T.M. He, H.P. Guan, and Y.L. Zhao (2009), Impending HRT wave precursors to the Wenchuan Ms 8.0 earthquake and methods of earthquake impending prediction by using HRT wave, Science in China, Series D: Earth Sciences 52, 10, 1572-1584.
  • Qiang, Z., C. Dian, L. Li, M. Xu, F. Ge, T. Liu, Y. Zhao, and M. Guo (1999), Satellitic thermal infrared brightness temperature anomaly image – shortterm and impending earthquake precursors, Science in China, Series D: Earth Sciences 42, 3, 313-324.
  • Qiang, Z.-J., X.-D. Xu, and C.-D. Dian (1991), Thermal infrared anomaly – precursor of impending earthquakes, Chinese Sci. Bull. 36, 319-323.
  • Ricci, D., G. Pacchioni, M.A. Szymanski, A.L. Shluger, and A.M. Stoneham (2001), Modeling disorder in amorphous silica with embedded clusters: The peroxy bridge defect center, Phys. Rev. B 64, 22, 224101-224108.
  • Rishbeth, H. (2006), F-region links with the lower atmosphere?, J. Atmos. Sol.-Terr. Phys. 68, 3-5, 469-478.
  • Rishbeth, H. (2007), Do Earthquake Precursors Really Exist?, Eos Trans. AGU 88, 29.
  • Rycroft, M.J., R.G. Harrison, K.A. Nicoll, and E.A. Mareev (2008), An overview of Earth's Global electric circuit and atmospheric conductivity, Space Science Rev. 137, 1-4, 83-105.
  • Saraf, A.K., V. Rawat, P. Banerjee, S. Choudhury, S.K. Panda, S. Dasgupta, and J.D. Das (2008), Satellite detection of earthquake thermal infrared precursors in Iran, Nat. Hazards 47, 1, 119-135.
  • Scholz, C.H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge Univ. Press, Cambridge, 471 pp.
  • Shankland, T.J., A.G. Duba, E.A. Mathez, and C.L. Peach (1997), Increase of electrical conductivity with pressure as an indicator of conduction through a solid phase in midcrustal rocks, J. Geophys. Res. 102, B7, 14,741-14,750.
  • Shluger, A.L., E.N. Heifets, J.D. Gale, and C.R.A. Catlow (1992), Theoretical simulation of localized holes in MgO, J. Phys.: Condens. Matter 4, 5711-5722.
  • Singh, B. (2008), Electromagnetic Phenomenon Related to Earthquakes and Volcanoes, Narosa Publ. House, New Delhi.
  • Sobolev, G.A. (2004), Microseismic variations prior to a strong earthquake, Fiz. Zemli 6, 3-13 and also Izvestiya, Physics Solid Earth 40, 455-464 (2004).
  • Sobolev, G.A., and A.A. Lyubushin (2006), Microseismic impulses as earthquake precursors, Izvestiya, Physics Solid Earth 42, 9, 721-733.
  • Sobolev, G.A., and A.A. Lyubushin (2007), Microseismic anomalies before the Sumatra earthquake of December 26, 2004, Izvestiya, Physics Solid Earth 43, 5, 341-353.
  • Sobolev, G.A., A.A. Lyubushin, and N.A. Zakrzhevskaya (2005), Synchronization of microseismic variations within a minute range of periods, Izvestiya, Physics Solid Earth 41, 8, 599-621.
  • Sorokin, V.M., V.M. Chmyrev, and A.K. Yaschenko (2006a), Possible DC electric field in the ionosphere related to seismicity, Adv. Space Res. 37, 4, 666-670.
  • Sorokin, V.M., A.K. Yaschenko, and M. Hayakawa (2006b), Formation mechanizm of the lower-ionospheric disturbances by the atmosphere electric current over a seismic region, J. Atmos. Sol.-Terr. Phys. 68, 11, 1260-1268.
  • St-Laurent, F. (1991), Corona effect and electro-atmospheric discharges: Possible luminous effect following earthquakes?, J. Meteorol. 16, 238-241.
  • St-Laurent, F. (2000), The Saguenay, Québec, earthquake lights of November 1988-January 1989, Seismol. Res. Lett. 71, 160-174.
  • St-Laurent, F., J.S. Derr, and F.T. Freund (2006), Earthquake lights and the stressactivation of positive hole charge carriers in rocks, Phys. Chem. Earth 31, 4-9, 305-312.
  • Stewart, T.R. (2000), Uncertainty, judgment, and error in prediction. In: D. Sarewitz, R.A. Pielke, Jr., and R. Byerly, Jr. (eds.), Prediction: Science, Decision Making, and the Future of Nature, Island Press, Washington, DC, 41-57.
  • Sugawara, H., and Y. Sakai (2003), Electron acceleration in gas by impulse electric field and its application to selective promotion of an electron-molecule reaction, J. Phys. D: Appl. Phys. 36, 1994-2000.
  • Takeuchi, A., B.W.S. Lau, and F.T. Freund (2006), Current and surface potential induced by stress-activated positive holes in igneous rocks, Phys. Chem. Earth 31, 4-9, 240-247.
  • Terada, T. (1931), On luminous phenomena accompanying earthquakes, Bull. Earthq. Res. Inst. Tokyo Univ. 9, 225-255.
  • Trakhtengerts, V.Y., D.I. Iudin, A.V.Kulchitsky, and M. Hayakawa, (2003), Electron acceleration by a stochastic electric field in the atmospheric layer, Phys. Plasmas 10, 3290.
  • Tramutoli, V. (1998), Robust AVHRR Techniques (RAT) for environmental monitoring: Theory and applications, EUROPTO Conference on Remote Sensing for Geology, Land Management, and Cultural Heritage III, Barcelona, Spain, September 1998, SPIE 3496.
  • Tramutoli, V., V. Cuomo, C. Filizzola, N. Pergola, and C. Pietrapertosa (2005), Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (İzmit) earthquake, August 17, 1999, Remote Sens. Environ. 96, 3-4, 409-426.
  • Trigunait, A., M. Parrot, S. Pulinets, and F. Li (2004), Variations of the ionospheric electron density during the Bhuj seismic event, Ann. Geophys. 22, 4123-4131.
  • Tronin, A.A. (ed.) (1999), Satellite Thermal Survey Application for Earthquake Prediction, Terra Scientific Publ., Tokyo, 717-746.
  • Tronin, A.A. (2000), Thermal IR satellite sensor data application for earthquake research in China, Int. J. Remote Sens. 21, 16, 3169-3177.
  • Tronin, A.A. (2002), Atmosphere-lithosphere coupling: Thermal anomalies on the Earth surface in seismic process. In: M. Hayakawa, and O.A. Molchanov (eds.), Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Terra Scientific Publ., Tokyo, 173-176.
  • Tronin, A.A., O.A. Molchanov, and P.F. Biagi (2004), Thermal anomalies and well observations in Kamchatka, Int. J. Remote Sens. 25, 13, 2649-2655.
  • Tsukuda, T. (1997), Sizes and some features of luminous sources associated with the 1995 Hyogo-ken Nanbu earthquake, J. Phys. Earth 45, 73-82.
  • Tsvetkova, T., M. Monnin, I. Nevinsky, and V. Perelygin (2001), Research on variation of radon and gamma-background as a prediction of earthquakes in the Caucasus, Radiat. Meas. 33, 1, 1-5.
  • Tuck, G.J., F.D. Stacey, and J. Starkey (1977), A search for the piezoelectric effect in quartz-bearing rock, Tectonophysics 39, 4, 7-11.
  • Vinet, P., J. Ferrante, J.H. Rose, and J.R. Smith (1987), Compressibility of solids, J. Geophys. Res. 92, B9, 9319-9325.
  • Walder, J., and A. Nur (1984), Porosity reduction and crustal pore pressure development, J. Geophys. Res. 89, B13, 11,539-511,548.
  • Wasa, Y., and K. Wadatsumi (2003), Functional strengthening and employment of Macroscopic Anomaly System by e-PISCO ASP, J. Jpn. Soc. Inform. Knowledge 13, 2, 41-47 (in Japanese).
  • Wendebourg, J., and J.W.D. Ulmer (1992), Modeling compaction and isostatic compensation in SEDSIM for basin analysis and subsurface fluid flow. In: Computer Graphics in Geology, Springer, Berlin/Heidelberg, 41, 143-153.
  • Willett, J.E. (1987), Gas Chromatography, John Wiley & Sons, London.
  • Xu, X.D., Z.J. Qiang, and C.G. Dian (1991), Abnormal increase of satellite thermal infrared and ground surface temperature of impending earthquakes, Chinese Sci. Bull. 36, 4, 291-294.
  • Yasuoka, Y., Y. Kawada, H. Nagahama, Y. Omori, T. Ishikawa, S. Tokonami, and M. Shinogi (2009), Preseismic changes in atmospheric radon concentration and crustal strain, Phys. Chem. Earth 34, 6-7, 431-434.
  • Zakharenkova, I.E., I.I. Shagimuratov, and A. Krankowski (2007), Features of the ionosphere behavior before the Kythira 2006 earthquake, Acta Geophys. 55, 4, 524-534.
  • Zhao, Y., and F. Qian (1994), Geoelectric precursors to strong earthquakes in China, Tectonophysics 233, 1-2, 99-113.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.