PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The multiobjective fuzzy linear fractional model of the mass transit system in Poznań

Autorzy
Identyfikatory
Warianty tytułu
PL
Wielokryterialny liniowy, ilorazowy model rozmytego systemu komunikacji miejskiej w Poznaniu
Języki publikacji
EN
Abstrakty
EN
Modeling and optimization of the mass transit system are considered in the paper. The multiobjective fuzzy linear, fractional model for the vehicle assignment problem in public transportation is constructed. The model takes into account several criteria of both passengers' and operator' s concem. The emphasis is put on the analysis of the passengers' flow, which is one of the key uncertain factors in the mass transit systems. The uncertainty of the passengers' flow results in the imprecision of several interrelated parameters, such as; riding time, resting time for driver and the number of passenger-kilometers on each route. Some other magnitudes are also considered as uncertain and imprecise. AlI the non-deterministic parameters of the mass transit system are modeled as L-R type fuzzy numbers. The optimization problem described by the model is solved by an interactive procedure, called M-FUP. The method solves the multiobjective mixed integer, linear, fractional problem with uncertain parameters. The case study of Poznań city in Poland is analyzed.
PL
W artykule przedstawiono zagadnienia modelowania i optymalizacji systemu komunikacji miejskiej. Skonstruowano wielokryterialny liniowy, ilorazowy model rozmyty problemu przydziału pojazdów dla transportu zbiorowego. Uwzględniono w nim zestaw kryteriów charakteryzujących zarówno interes pasażera, jak i przewoźnika. Położono nacisk na analizę potoku pasażerskiego, który stanowi jeden z głównych czynników niepewnych w systemach komunikacji miejskiej. Niepewność potoku pasażerskiego wpływa na nieprecyzyjność innych, wzajemnie powiązanych parametrów, takich jak: czas przejazdu, czas odpoczynku kierowcy, liczba pasażerokilometrów na każdej linii komunikacyjnej. Inne wielkości zanalizowano również jako niepewne i nieprecyzyjne. Wszystkie parametry systemu komunikacji miejskiej o charakterze niedeterministycznym zamodelowano w postaci liczb rozmytych typu L-R. Metoda ta rozwiązuje wielokryteria1ny całkowitoliczbowy, mieszany problem liniowy z parametrami niepewnymi. Rozważania przeprowadzono na przykładzie Poznania.
Rocznik
Strony
97--123
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Poznań University of Technology, Faculty of Working Machines and Transportation, ul. Piotrowo 3, 60-965 Poznań, Poland
Bibliografia
  • [1] Bielli M., Carotenuto P., Gastalidi M. Multicriteria evaluation model of public transport networks, In: Bianco L., Toth P. (eds.), Advanced Methods in Transportation Analysis, Springer-Verlag, New York, pp. 135-156, 1996.
  • [2] Bushell Ch. (ed.). Jane’s urban transport systems 1994-1995, XIII-edition, Sentinel House, Jane’s Information Group. Coulsdon. 1994.
  • [3] Cejrowski M., Krych A. Comprehensive study of traffic in Poznań, Scientific report, Poznań University of Technology, Poznań, 1992.
  • [4] Chang T.-Y., Shyu T.-H. The application of fuzzy multicriteria decision making to the transit system performance evaluation. Proceedings of 10th International Conference on MCDM, Taipei, vol. 4, pp. 195-204, 1992.
  • [5] Choo E.U., Atkins D.R. An interactive algorithm for multicriteria programming, Computers and Operations Research, vol. 7, pp. 81-87, 1980.
  • [6] Czyżak P., Słowiński R. FLIP - Multiobjective fuzzy linear programming software with graphical facilities, In: Fedrizzi M., Kacprzyk J., Roubens M. (eds.). Interactive Fuzzy Optimization and Mathematical Programming, Springer-Verlag, Berlin, 1991.
  • [7] Czyżak P., Słowiński R., Żak J. "M-FLIP"- an interactive method for multiobjective mixed integer linear fractional programming under uncertainty, Foundations of Computing and Decision Sciences, vol. 18, no. 2, pp. 71-81, 1993.
  • [8] Czyżak P., Żak J. A model of an urban transportation system formulated as a multiobjective mathematical programming problem under uncertainty, Journal of Advanced Transportation, vol. 29, no.1, pp. 43-62, 1995.
  • [9] Czyżak P., Żak J. Multicriterial model for an operation of an urban transportation system under uncertainty, Zagadnienia Eksploatacji Maszyn, no. 2, pp. 297-309 1994.
  • [10] Furth P.G., Wilson N.H.M. Setting frequencies on bus routes: theory and practice. Transportation Research, vol. 8, no. 18, pp. 1-7, 1981.
  • [11] Golden B„ Assad A. Vehicle routing: methods and studies, North-Holland, Amsterdam, 1988.
  • [12] Herrera F., Lopez E., Mendana C., Rodriguez M.A. Solving an assignment-selection problem with verbal information and using genetic algorithms, European Journal of Operational Research, vol. 119, no. 2, pp. 326-337, 1999.
  • [13] Israeli Y., Ceder A. Multi-objective approach for designing transit routes with frequencies, In: Bianco L., Toth P. (eds.). Advanced Methods in Transportation Analysis, Springer-Verlag, New York, pp. 157-182, 1996.
  • [14] Kelly A., Harris. M. J. Management of industrial maintenance, Butterworths, London - Boston, 1987.
  • [15] Koskosidis Y.A., Powell W.B., Solomon M.M. An optimization based heuristic for vehicle routing and scheduling with soft time window constraints, Transportation Science, vol. 26, no. 2, pp. 69-85, 1992.
  • [16] Milosavlevic N., Teodorovic D., Papie V., Pavkovic G. A fuzzy approach to the vehicle assignment problem, Transportation Planning and Technology, vol. 20 pp 33-47, 1996.
  • [17] Roy B. Decision-aid and decision making, In: Bana e Costa C.A. (ed.). Readings in Multiple Criteria Decision Aid, Springer-Verlag, Berlin, pp. 17-35, 1990.
  • [18] Roy B. The outranking approach and the foundations of ELECTRE methods, In: Bana e Costa C.A. (ed.): Readings in Multiple Criteria Decision Aid, Springer-Verlag, Berlin, pp. 155-183, 1990.
  • [19] Rudnicki A. Quality in urban public transportation, Association of the Transportation Engineers, Cracow, 1999 (in Polish).
  • [20] Shepardson F. Modeling the bus crew scheduling problem, In: Rousseau J.-M. (ed.). Computer Scheduling of Public Transport, vol. 2, North-Holland, Amsterdam pp 247-261, 1985.
  • [21] Słowiński R. A multicriteria fuzzy linear programming method for water supply system development planning, Fuzzy Sets and Systems, vol. 19. pp. 217-237, 1986.
  • [22] Słowiński R.. Teghem J. (eds.). Stochastic vs. fuzzy approaches to multiobjective mathematical programming under uncertainty, Kluwer Academic Publishers. Dordrecht, 1990.
  • [23] Sousa J. A computer-based interactive approach to crew scheduling, European Journal of Operational Research, vol. 55, no. 3, pp. 382-393, 1991.
  • [24] Taillard E.D., Badeau P., Gendreau M., Guertin F., Potvin J.-Y., Rousseau J.M. A tabu search heuristic for the vehicle routing problem with time Windows, Transportation Science, vol. 31, no. 2, pp. 170-186, 1997.
  • [25] Tzeng G.-H., Shiau T.-A. Multiple-objective programming for bus operation: A case study for Taipei city, Transportation Research, vol. 22, no. 3B, pp. 195-206, 1988.
  • [26] Welding P. The instability of close interval service, Operational Research Quarterly, vol. 8, no. 3, pp. 133-148, 1957.
  • [27] Wren A. General review of the use of computers in scheduling buses and their crews, In: Wren A. (ed.). Computer Scheduling of Public Transport, North-Holland, Amsterdam, pp. 3-16. 1981.
  • [28] Zadeh L.A. Fuzzy sets, Information and Control, vol. 8, pp. 338-353, 1965.
  • [29] Żak J. Modeling of uncertainty in mass transit systems, Proceedings of 5th Conference: The problems of reliability of transportation, Spała, pp. 186-193, 1993 (in Polish).
  • [30] Żak J. Multiobjective modeling and optimization of mass transit systems, Doctoral dissertation, Poznań University of Technology, Poznań, 1995 (in Polish).
  • [31] Żak J. The methodology of multiple-criteria decision making in the optimization of an urban transportation system: case study of Poznań City in Poland, International Transactions in Operational Research, no. 6, pp. 571-590, 1999.
  • [32] Żak J. The decision support system (DSS) for the multiobjective crew scheduling problem in the transportation company. In: Adamski A., Rudnicki A., Żak J. (eds.). Proceedings of the International Conference Modeling and Management in Transportation, Poznan - Cracow, vol. 1, pp. 351-360, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPZ3-0003-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.