Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


International Journal of Applied Mechanics and Engineering

Tytuł artykułu

Thermal stresses in a single elastic fiber embedded in an infinite matrix

Autorzy Esparragoza, I. E.  Levy, C.  Caudill, N. E. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In this work, an analytical solution of the thermal stresses for a fiber embedded in a matrix is presented based on the idea of the boundary layer and under some simplifying assumptions. These assumptions include: the properties of both materials, fiber and matrix, remain constant; both materials remain in the elastic range so no plastic-deformation are considered; there exists a perfect bonding between the fiber and matrix so the condition of no-opening holds over the entire interface; and the composite is subjected to an uniform change of temperature. The analytical solution to the problem is found for the case when the length of the embedded bar (fiber) is much greater than its radius, and the Young's modulus of the matrix is much less than that of the fiber. The problem is also solved numerically by means of finite element analysis using a commercial package. Both results are compared and it is shown that both approaches coincide very close qualitatively and quantitatively although significant discrepancies may appear at specific points for specific cases.
Słowa kluczowe
PL kompozyty   reologia  
EN fiber   thermal stresses   analytical approach   numerical analysis  
Wydawca Oficyna Wydawnicza Uniwersytetu Zielonogórskiego
Czasopismo International Journal of Applied Mechanics and Engineering
Rocznik 2006
Tom Vol. 11, no 3
Strony 577--591
Opis fizyczny Bibliogr. 28 poz., rys., wykr.
autor Esparragoza, I. E.
autor Levy, C.
autor Caudill, N. E.
  • School of Engineering Design, Technology and Professional Programs The Pennsylvania State University 25 Yearsley Mill Rd., Media, PA 19063, USA,
Beyerlein I.J. and Landis C.M. (1999): Shear-lag model for failure simulations of unidirectional fiber composites including matrix stiffness. - Mech. Mat., vol.31, No.5, pp.331-350.
Chawla K.K. (1987): Composite Materials. - Science and Engineering. - Springer-Verlag.
Cherepanov G.P. (1983): Fracture Mechanics of Composites (In Russian). - Moscow: Nauka Publisher.
Cherepanov G.P. and Esparragoza I.E. (1995): The problem of fiber pullout. - Mat. Sci. and Engineering A, vol.203, pp.332-342.
Cox H.L. (1952): The elasticity and strength of paper and other fibrous materials. - British Journal of Applied Physics, vol.3, pp.72-79.
Esparragoza I.E. and Caudill N. (2003): On the theory of the thermal stresses in a fiber embedded in a matrix. - Proceedings of the 5th International Congress of Thermal Stresses and Related Topics, TS2003, 8-11 June 2003, Blacksburg, VA, MM-5-2-1, MM-5-2-4.
Esparragoza I.E., Aziz A.H. and Damle A.S. (2003): Temperature distribution along a fiber embedded in matrix under steady state conditions. - Composites: Part B, vol.34, pp.429-436.
Greszczuk L.B. (1965): Thermoelastic properties of filamentary composites. - Proceedings AIAA 6th Struct. Mat. Conference :285.
Hseuh C.H. (1990): Interfacial debonding and fiber pull-out stresses of fiber reinforced composites. - J. Mat. Sci. and Eng., vol.A123, pp.1-11.
Hutchinson J.W. and Jensen H.M. (1990): Models of fiber debonding and pull-out in brittle composites with friction. - Mech. Mat., vol.9, pp.139-163.
Ishikawa T. and Kobayashi S. (1977): Thermal expansion coefficients of unidirectional fiber reinforced composites. - J. Jpn. Soc. Aeronaut. Space Sci., vol.25, Part 1, pp.394-400, Part 2, pp.423-429.
Kerrish J.F. (9171): Thermal diffusivity of heterogeneous materials. - J. Appl. Phys., vol.42, pp.267-271.
Kerrish J.F. (1972): Thermal diffusivity of heterogeneous materials. II. Limits of steady-state approximation. - J. Appl. Phys., vol.43, pp.112-117.
Koráb J., Štefánik P., Kavecký Š., Šebo P. and Korb G. (2002): Thermal conductivity of unidirectional copper matrix carbon fibre composites. - Composites Part A., vol.33, pp.577-581.
Landis C.M. (2001): Shear lag modeling of thermal stresses in unidirectional composites. - Proceedings of the 10th International Conference on Fracture, Ref. ICF100374OR.
Landis C.M. and McMeeking R.M. (1998): Stress concentrations in composites with interface sliding, matrix stiffness, and uneven fiber spacing using shear-lag theory. - Int. J. Solid Struc., vol.36, pp.4333-4361.
Nairn J.A. (1997): On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. - Mech. Mat., vol.26, pp.63-80.
Okabe T. and Takeda N. (2002): Elastoplastic shear-lag analysis of single-fiber composites and strength prediction of unidirectional multi-fiber composites. - Composites: Part A, vol.33, pp.1327-1335.
Papanicolaou G.C., Michalopoulou M.V. and Anifantis N.K. (2002): Thermal stresses in fibrous composites incorporating hybrid interphase regions. - Comp. Sci. and Tech., vol.62, pp.1881-1894.
Parker W.J., Jenkins R.J. and Abbott G.L. (1961): Thermal diffusivity of measurement using the flash technique. - J. Appl. Phys., vol.32, pp.1679-1684.
Schapery R.A. (1968): Thermal expansion coefficients of composite materials based on energy principle. - J. Comp. Materials. vol.2, pp.380-404.
Taylor R.E. (1983): Thermal diffusivity of composites. - 8ETPC Proceedings of High Temperatures-High Pressures, vol.15, pp.299-309.
Taylor R.E. (1993): Thermal conductivity of carbon fibers. - Proceedings of High Temperatures-High Pressures. vol.25, pp.443-450.
Uemura M. and Yamaguchi Y. (1976): Thermal expansion coefficients and residual stresses in filament-wound CFRP materials. - 5th FRP Symp. Jpn. Soc. Mater. Sci., pp.38-41.
Wakashima K., Otsuka M. and Umekawa S. (1974): Thermal expansions of heterogeneous solids containing aligned ellipsoidal inclusions. - J. Comp. Materials., vol.8, pp.391-404.
Xu Y.L. and Reifsnider K.L. (1994): Micromechanical analysis of fiber crack propagation in fibrous composites due to thermal stresses. - J. Thermal Stresses, vol.17, pp.143-161.
Yeh N.M. and Krempl E. (1993): Influence of cool-down temperature histories on the residual stresses in fibrous metalmatrix composites. - J. Comp. Materials, vol.27, No.10, pp.973-995.
You L.H. (2003): Thermal stress distributions in axisymmetrical orthotropic fiber-reinforced composites with multilayered interfaces. - J. Mats. Sci., vol.38, No.13, pp.2963-2970.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPZ2-0023-0039