Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A family of model predictive control algorithms with artificial neural networks

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper details nonlinear Model-based Predictive Control (MPC) algorithms for MIMO processes modelled by means of neural networks of a feedforward structure. Two general MPC techniques are considered: the one with Nonlinear Optimisation (MPC-NO) and the one with Nonlinear Prediction and Linearisation (MPC-NPL). In the first case a nonlinear optimisation problem is solved in real time on-line. In order to reduce the computational burden, in the second case a neural model of the process is used on-line to determine local linearisation and a nonlinear free trajectory. Single-point and multi-point linearisation methods are discussed. The MPC-NPL structure is far more reliable and less computationally demanding in comparison with the MPC-NO one because it solves a quadratic programming problem, which can be done efficiently within a foreseeable time frame. At the same time, closed-loop performance of both algorithm classes is similar. Finally, a hybrid MPC algorithm with Nonlinear Prediction, Linearisation and Nonlinear optimisation (MPC-NPL-NO) is discussed.
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
  • Institute of Control and Computation Engineering Faculty of Electronics and Information Technology Warsaw University of Technology ul. Nowowiejska 15/19, 00–665 Warsaw, Poland,
  • [1] Kesson B. M. and Toivonen H. T. (2006): A neural network model predictive controller. - J. Process Contr., Vol. 16, No. 3, pp. 937-946.
  • [2] Bacic M., Cannon M. and Kouvaritakis B. (2002): Feedback linearization MPC for discrete-time bilinear systems. - Proc. 15-th IFAC World Congress, Barcelona, Spain, CDROM, paper 2391.
  • [3] Babuška R., Sousa J. M. and Verbruggen H. B. (1999): Predictive control of nonlinear systems based on fuzzy and neural models. - Proc. European Control Conf., Karlsruhe, Germany, CD-ROM, paper F1032-5.
  • [4] Bazaraa M. S., Sherali J. and Shetty K. (1993): Nonlinear Programming: Theory and Algorithms.-New York: Wiley.
  • [5] Bloemen H.H.J., van den Boom T. J. J. and Verbruggen H. B. (2001): Model-based predictive control for Hammerstein-Wiener systems. - Int. J. Contr., Vol. 74, No. 5, pp. 482-495.
  • [6] Brdyś M.A. and Tatjewski P. (2005): Iterative algorithms for multilayer optimizing control. - London: Imperial College Press/World Scientific.
  • [7] Cavagnari L.,Magni L. and Scattolini R. (1999): Neural network implementation of nonlinear receding-horizon control. - Neural Comput. Applic., Vol. 8, No. 1, pp. 86-92.
  • [8] Clarke D. W., Mohtadi C. and Tuffs P. S. (1987): Generalized predictive control - I. The basic algorithm.-Automatica, Vol. 23, No. 2, pp. 137-148.
  • [9] Cutler R. and Ramaker B. (1979): Dynamic matrix control - A computer control algorithm. - Proc. AIChE National Meeting, Houston.
  • [10] Dutka A. and Ordys A. W. (2004): The optimal non-linear generalised predictive control by the time-varying approximation. - Proc. 10-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Mi˛edzyzdroje, Poland, pp. 299-303.
  • [11] Grimble M.J. and Ordys A.W. (2001): Nonlinear predictive control for manufacturing and robotic applications. - Proc. 7-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 579-592.
  • [12] Haykin S. (1999): Neural Networks - A Comprehensive Foundation. - Englewood Cliffs, NJ: Prentice Hall.
  • [13] Henson M. A. (1998): Nonlinear model predictive control: Current status and future directions.-Comput. Chemi. Engi., Vol. 23, No. 2, pp. 187-202.
  • [14] Hornik K., Stinchcombe M. and White H. (1989): Multilayer feedforward networks are universal approximators. - Neural Netw., Vol. 2, No. 5, pp. 359-366.
  • [15] Hussain M. A. (1999): Review of the applications of neural networks in chemical process control - Simulation and online implementation.-Artifi. Intelli. Eng., Vol. 13, No. 1, pp. 55-68.
  • [16] Kavsek B.K., Skrjanc I. and Matko D. (1997): Fuzzy predictive control of a highly nonlinear pH process. - Comput. Chem. Eng., Vol. 21, Supplement, pp. S613-S618.
  • [17] Kouvaritakis B., Cannon M. and Rossiter J. A. (1999): Nonlinear model based predictive control. - Int. J. Contr., Vol. 72, No. 10, pp. 919-928.
  • [18] Liu G. P., Kadirkamanathan V. and Billings S. A. (1998): Predictive control for non-linear systems using neural networks. -Int. J. Contr., Vol. 71, No. 6, pp. 1119-1132.
  • [19] Ławryńczuk M. and Tatjewski P. (2006): An efficient nonlinear predictive control algorithm with neural models and its application to a high-purity distillation process. - Lecture Notes in Artificial Intelligence, Springer, Vol. 4029, pp. 76-85.
  • [20] Ławryńczuk M. and Tatjewski P. (2004): A stable dual-mode type nonlinear predictive control algorithm based on online linearisation and quadratic programming. - Proc. 10-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 503-510.
  • [21] Ławryńczuk M. (2003): Nonlinear model predictive control algorithms with neural models.-Ph.D. thesis,Warsaw University of Technology, Warsaw, Poland.
  • [22] Ławryńczuk M. and Tatjewski P. (2003): An iterative nonlinear predictive control algorithm based on linearisation and neural models. - Proc. European Control Conf., Cambridge, U.K., CD-ROM, paper 339.
  • [23] Ławryńczuk M. and Tatjewski P. (2002): A computationally efficient nonlinear predictive control algorithm based on neural models. - Proc. 8-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Szczecin, Poland, pp. 781-786.
  • [24] Ławryńczuk M. and Tatjewski P. (2001): A multivariable neural predictive control algorithm. - Proc. IFAC Advanced Fuzzy-Neural Control Workshop, Valencia, Spain, pp. 191-196.
  • [25] Maciejowski J.M. (2002): Predictive Control with Constraints. - Harlow, U.K.: Prentice Hall.
  • [26] Mahfouf M. and Linkens D.A. (1998): Non-linear generalized predictive control (NLGPC) applied to muscle relaxant anaesthesia. - Int. J. Contr., Vol. 71, No. 2, pp. 239-257.
  • [27] Maner B.R., Doyle F.J., Ogunnaike B.A. and Pearson R.K. (1996): Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models. - Automatica, Vol. 32, No. 9, pp. 1285-1301.
  • [28] Michalska H. and Mayne D.Q. (1993): Robust receding horizon control of constrained nonlinear systems. - IEEE Trans. Automat. Cont., Vol. 38, No. 11, pp. 1623-1633.
  • [29] Morari M. and Lee J. (1999): Model predictive control: Past, present and future. - Comput. Chem. Engi., Vol. 23, No. 4/5, pp. 667-682.
  • [30] Nørgaard M., Ravn O., Poulsen N. K. and Hansen L. K. (2000): Neural Networks for Modelling and Control of Dynamic Systems. - London: Springer.
  • [31] Osowski S. (1996): Neural Networks - An Algorithmic Approach. -Warsaw, Poland: WNT.
  • [32] Parisini T., Sanguineti M. and Zoppoli R. (1998): Nonlinear stabilization by receding-horizon neural regulators. - Int. J. Contr., Vol. 70, No. 3, pp. 341-362.
  • [33] Piche S., Sayyar-Rodsari B., Johnson D. and Gerules M. (2000): Nonlinear model predictive control using neural networks. - IEEE Contr. Syst. Mag., Vol. 20, No. 3, pp. 56-62.
  • [34] Qin S. J. and Badgwell T. (2003): A survey of industrial model predictive control technology. -Contr. Eng. Pract., Vol. 11, No. 7, pp. 733-764.
  • [35] Rossiter J. A. (2003): Model-Based Predictive Control. - Boca Raton, FL: CRC Press.
  • [36] Sriniwas G. R. and Arkun Y.(1997): A global solution to the non-linear model predictive control algorithms using polynomial ARX models. - Comput. Chem. Engi., Vol. 21, No. 4, pp. 431-439.
  • [37] Tatjewski P. (2007): Advanced Control of Industrial Processes, Structures and Algorithms. -London: Springer.
  • [38] Tatjewski P. and Ławryńczuk M. (2006): Soft computing in model-based predictive control. - Int. J. Appl. Math. Comput. Sci., Vol. 16, No. 1, pp. 101-120.
  • [39] Trajanoski Z. and Wach P. (1998): Neural predictive control for insulin delivery using the subcutaneous route.-IEEE Trans. Biomed. Eng., Vol. 45, No. 9, pp. 1122-1134.
  • [40] Wang L. X. and Wan F. (2001): Structured neural networks for constrained model predictive control. - Automatica, Vol. 37, No. 8, pp. 1235-1243.
  • [41] Yu D. L. and Gomm J. B. (2003): Implementation of neural network predictive control to a multivariable chemical reactor. -Contr. Eng. Pract., Vol. 11, No. 11, pp. 1315-1323.
  • [42] Zheng A. (1997): A computationally efficient nonlinear MPC algorithm.-Proc.American Control Conf., Albuquerque, pp. 1623-1627.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.