Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model USPED jako narzędzie prognozowania efektów erozji i depozycji materiału glebowego

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Model USPED as a tool for assessment of soil erosion and deposition effect
Języki publikacji
The origin and development of the USPED (Unite Stream Power-based Erosion/Deposition) model and its application to erosion-deposition modelling within catchments areas of Pr1dnik and D3ubnia Rivers have been presented. The test area . upland region north to Cracow . is covered with highly erodible loess soils. Algorithms proposed by Mitasowa et al. (1999) have been adopted for the Idrisi32 GIS software chosen for modelling. The USLE (the Universal Soil Loss Equation) model parameters (R,C,K,P) have been used for the quantitative assessment of erosion effects. Rainfall and runoff erosivity factor (R) was approximated with Fournier index. The Renard et al. (1997) equation has been used to obtain the soil erodibility factor (K) values. This method was Chojen because of its simplicity . only basic data about soil granulation was necessary. The cover and management factor values (C) were taken from different authors (Koreleski,1992; Molnár i Julien, 1998; Pistocchi i in., 2002). Panchromatic IRS orthophotomap together with DTM (Digital Terrain Model) were used to assess the supporting erosion control practices factor (P). The factor values were used after Koreleski (1992). The results of this investigation enabled us to divide the test area into soil erosion intensity zones based on predicted soil loss values. Deposition areas predicted with USPED model have been presented as a separate zone. High and very high erosion rates have been predicted for 9,6% of the area in consideration. 47,2% Of the test area has been assessed as free from the soil erosion danger. The soils with the highest erosion rates are loess soils and limestone soils. The most of alluvial soil covered areas can be found among the deposition zones, what is in accordance with these soils genesis. The studies also indicated that USPED model seems to be very useful tool for soil erosion assessment together with deposition effect prediction of soils material within the particular catchments.
Opis fizyczny
Bibliogr. 36 poz.
  • Akademia Górniczo-Hutnicza w Krakowie, Wydział Geodezji Górniczej i Inżynierii Środowiska
  • Akademia Górniczo-Hutnicza w Krakowie, Wydział Geodezji Górniczej i Inżynierii Środowiska
  • 1. Arnoldus H.M.J., 1977: Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco [W:] Assessing Soil Degradation. FAO Soils Bulletin 34, Rome
  • 2. Bujakowski K., Mierzwa W., Pyka K., Trafas K., 1998: Komputerowy atlas wojew6dztwa krakowskiego - stan aktualny i przyszłość. Polskie Towarzystwo Informacji Przestrzennej - VIII Konferencja Naukowo- Techniczna. Systemy Informacji Przestrzennej, Warszawa, 19-21 maja.
  • 3. Coutinho M.A., Tomas P.P., 1995: Comparison of Fournier with Wischmeier rainfall erosivity indices [W:] Proceedings First International Congress, European Society for Soil Conservation (ESSC), Silsoe. CAB International
  • 4. Desmet P. J., Govers G., 1996: Comparison of routing algorithsm for digital elevation models and their implications for predicting ephemeral gullies. International Journal of Geographical Information Systems, 10.
  • 5. Drzewiecki W., 2003: Analiza krajobrazowo-ekologiczna sposobu użytkowania terenu z wykorzystaniem System6w Informacji Geograficznej i danych teledetekcyjnych. Akademia G6rniczo-Hutnicza, Wydział Geodezji Górniczej i Inżynierii Środowiska (rozprawa doktorska).
  • 6. Drzewiecki W., Mularz S., 2001: Modelowanie erozji wodnej gleb z wykorzystaniem GIS. Materiały Konferencji Naukowej nt. ,Nowoczesne technologie w geodezji i inżynierii środowiska", 22 września 2001, Wydział Geodezji G6rniczej i Inżynierii Środowiska AGH w Krakowie
  • 7. Foster G. R., 1990: Process-based modelling of soil erosion by water on agricultural land. [W:] Boardman J., Foster I. D. I., Dearing J. A. (red.) Soil Erosion an Agricultural Land. John Wiley & Sons.
  • 8. Foster G.R., McCool D.K., Renard K.G., Moldenhauer W.C., 1981: Conversion of the universal soil loss equation to SI metric units. Journal of Soil and Water Conservation, 36.
  • 9. Kandrika S, Dwivedi R.S., 2003: Assessment of the Impact of Mining on Agricultural Land Using Erosion- Deposition Model and Space Borne Multispectral Data. Journal of Spatial Hydrology, Vol. 3, No. 2.
  • 10. Kolasa M., 1963: Geotechniczne własności lessów okolicy Krakowa. Wydawnictwo Geologiczne. Prace Geologiczne nr 18, Warszawa.
  • 11. Komornicki T., 1980: Gleby miejskiego wojew6dztwa krakowskiego. Folia Geographica Series Geographica-Physica, Vol. XIII.
  • 12. Kondracki J., 1988: Geografia fizyczna Polski. PWN, Warszawa
  • 13. Koreleski K., 1992: Próby oceny natężenia erozji wodnej. Zeszyty Naukowe Akademii Rolniczej im. H. Kollqtaja w Krakowie, Sesja Naukowa, z. 35.
  • 14. Laflen J. M., Lane L. J., Foster G. R., 1991: The water erosion prediction project - a new generation of erosion prediction technology. Journal of Soil and Water Conservation, 46.
  • 15. Loureiro N.S., Coutinho M.A., 1995: Rainfall changes and rainfall erosivity increase in the Algarve (Portugal). Catena 24.
  • 16. Marks R., Muller M.J., Leser H., Klink H.-J. (red.), 1989: Anleitung zur Bewertung des Leistungsvermogens des Landschaftshaushaltes (BA LVL). Forschungen zur Deutschen Landeskunde Band 229, Zentralaussuss fur deutsche Landeskunde, Selbstverlag, Trier.
  • 17. Mitas L., Mitasova H., 1998: Distributed soil erosion simulation for effective erosion prevention. Water Resources Research, 34 (3).
  • 18. Mitasova H., Hofierka J., Zlocha M., Iverson R. L., 1997: Reply to Comment by Desmet and Govers. nternational Journal of Geographic information Science, 11 (6).
  • 19. Mitasova H., Mitas L., Brown W.M., Johnston D.M., 1998: Multidimensional soil erosion/deposition modeling and visualization using GIS. Final report for USA CERL. University of Illinois, Urbana-Champaign, IL
  • 20. Mitasova H., Mitas L., Brown W.M., Johnston D.M., 1999: Terrain modeling and Soil erosion simulations for Fort Hood and Fort Polk test areas. Annual report for USA CERL. University of Illinois, Urbana-Champaign, IL
  • 21. Mitasova H., Brown W.M., Johnston D.M., 2003: Terrain Modeling and Soil Erosion Simulation. Final Report. University of Illinois, Urbana-Champaign, IL.
  • 22. Molnlr D.K., Julien P.Y., 1998: Estimation of Upland Erosion Using GIS. Computer and Geosciences, vol. 24, nr 2
  • 23. Moore I.D., Burch G.J., 1986a: Physical basis of the length-slope factor in the Universal Soil Loss Equation. Soil Science Society Journal, 50 (5).
  • 24. Moore I.D., Burch G.J., 1986b: Sediment transport capacity of sheet and rill flow: Application of unit stream power theory. Water Resources Research, 22.
  • 25. Moore I.D., Wilson J.P., 1992: Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. Journal of Soil and Water Conservation, 47.
  • 26. Morgan R.P.C., Quinton J.N., Smith R.E., Govers G., Posen J.W.A., Auerswald K., Chisci G., Torri D., Styczeli M.E., 1998: The Europian soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23.
  • 27. Pistocchi A., Cassoni G., Zanio O., 2002: Use of the USPED model for mapping soil erosion and managing best land conservation practices. IEMSs 2002, Congress Proceedings, Lugano.
  • 28. Renard K.G., Foster G.R., Weesies G.A., Porter J.P., 1991: RUSLE: Revised Universal Soil Loss Equation. Journal of Soil and Water Conservation, 46(1)
  • 29. Renard K. G., Foster G. R., Weesies G. A., McCool D. K., Yoder D. C., 1997: Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE). U.S. Department of Agriculture, Agriculture Handbook No. 703.
  • 30. Saavedra C., Mannaerts C.M., 2005: Estimating erosion in an Andean catchment combining coarse and fine spatial resolution satellite imagery. Proceedings of 31st International Symposium on Remote Sensing of Environment, June 20-24, 2005, Saint Petersburg, Russian Federation.
  • 31. Starkel L., 1991: Rzeźba terenu [W:] I. Dynowska, M. Maciejewski [red.] Dorzecze g6rnej Wisly. PWN, Warszawa.
  • 32. SUri M., Cebecauer T., Hofierka J., 2003: Digitalne modely reliofu a ich aplikacie v iivotnom prostedi. Zivotne prostredie, Vol. 37, 1.
  • 33. Van der Knijff J.M., Jones R.J.A., Montanarella L., 2000: Soil Erosion Risk. Assessment in Italy. European Commis- sion Directorate General JRC Joint Research Centre, Space Applications Institute, European Soil Bureau.
  • 34. Van Lynden G.W.J., 1995: European soil resources. Nature and Environment nr 71. Council of Europe, Strasbourg.
  • 35. Warren S.D., Senseman G.M., Block P.R., Ruzycki T.S., Wilcox D.D., 2000: Soil Erosion Survey for Camp Guernsey, Wyoming Using New-Generation Multi-Dimensional Soil Erosion Modeling. Center for Ecological Management of Military Lands Technical Publication Series TPS 00-14, Colorado State University, Ft. Collins.
  • 36. Wischmeier W. H., Smith D.D., 1978: Predicting Rainfall Erosion Losses - A Guide to Conservation Planning. USDA Handbook 537, Washington, D. C..
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.