Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BPW7-0018-0050

Czasopismo

Optica Applicata

Tytuł artykułu

Optical external efficiency calculation for mid-infrared quantum cascade laser

Autorzy Hamadou, A. 
Treść / Zawartość http://opticaapplicata.pwr.edu.pl/archive.php
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In this paper, we present a simple method for calculation of optical external efficiency of mid-infrared quantum cascade laser. The approach is based on the three-level rate equations describing the variation of the electron number in the excited states and the photon number present within the cavity. We have obtained a simple analytical formula for the optical external efficiency. The effects of cavity lengths and current injection are taken into account. It has been found that the optical external efficiency becomes more important at high current injection and at lower cavity lengths.
Słowa kluczowe
EN quantum cascade laser   rate equations   output power   optical external efficiency  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Optica Applicata
Rocznik 2011
Tom Vol. 41, nr 3
Strony 717--725
Opis fizyczny Bibliogr. 21 poz.
Twórcy
autor Hamadou, A.
  • Département de Génie Mécanique, Université Abdelhamid Ibn Badis de Mostaganem, Algeria
Bibliografia
[1] FAIST J., CAPASSO F., SIVCO D.L., SIRTORI C., HUTCHINSON A.L., CHO A.Y., Quantum cascade laser, Science 264(5158), 1994, pp. 553–556.
[2] SIRTORI C., KRUCK P., BARBIERI S., COLLOT P., NAGLE J., BECK M., FAIST J., OESTERLE U., GaAs/AlxGa1–xAs quantum cascade lasers, Applied Physics Letters 73(24), 1998, pp. 3486–3488.
[3] PAGE H., BECKER C., ROBERTSON A., GLASTRE G., ORTIZ V., SIRTORI C., 300 K operation of a GaAs-based quantum-cascade laser at λ ≈ 9 μm, Applied Physics Letters 78(22), 2001, pp. 3529–3531.
[4] CARDER D.A., WILSON L.R., GREEN R.P., COCKBURN J.W., HOPKINSON M., STEER M.J., AIREY R., HILL G., Room-temperature operation of an InAs–GaAs–AlAs quantum-cascade laser, Applied Physics Letters 82(20), 2003, pp. 3409–3411.
[5] NG W.H., ZIBIK E.A., SOULBY M.R., WILSON L.R., COCKBURN J.W., LIU H.Y., STEER M.J., HOPKINSON M., Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K, Journal of Applied Physics 101(4), 2007, p. 046103.
[6] SCAMARCIO G., CAPASSO F., SIRTORI C., FAIST J., HUTCHINSON A.L., SIVCO D.L., CHO A.Y., High--power infrared (8-micrometer wavelength) superlattice lasers, Science 276(5313), 1997, pp. 773–776.
[7] TREDICUCCI A., CAPASSO F., GMACHL C., SIVCO D.L., HUTCHINSON A.L., CHO A.Y., FAIST J.,SCAMARCIO G., High-power inter-miniband lasing in intrinsic superlattices, Applied Physics Letters 72(19), 1998, pp. 2388–2390.
[8] ANDERS S., SCHRENK W., GORNIK E., STRASSER G., Room-temperature emission of GaAs/AlGaAs superlattice quantum-cascade lasers at 12.6 μm, Applied Physics Letters 80(11), 2002, pp. 1864–1866.
[9] HOFSTETTER D., BECK M., AELLEN T., FAIST J., High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm, Applied Physics Letters 78(4), 2001, pp. 396–398.
[10] FAIST J., BECK M., AELLEN T., GINI E., Quantum-cascade lasers based on a bound-to-continuum transition, Applied Physics Letters 78(2), 2001, pp. 147–149.
[11] WALTHER C., SCALARI G., FAIST J., BEERE H., RITCHIE D., Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz, Applied Physics Letters 89(23), 2006, p. 231121.
[12] DEVENSON J., BARATE D., CATHABARD O., TEISSIER R., BARANOV A.N., Very short wavelength (λ = 3.1–3.3 μm) quantum cascade lasers, Applied Physics Letters 89(19), 2006, p. 191115.
[13] SCALARI G., SIRIGU L., TERAZZI R., WALTHER C., AMANTI M.I., GIOVANNINI M., HOYLER N., FAIST J., SADOWSKI M.L., BEERE H., RITCHIE D., DUNBAR L.A., HOUDRÉ R., Multi-wavelength operation and vertical emission in THz quantum-cascade lasers, Journal of Applied Physics 101(8), 2007, p. 081726.
[14] HAMADOU A., THOBEL J.-L., LAMARI S., Modelling of temperature effects on the characteristics of mid-infrared quantum cascade lasers, Optics Communications 281(21), 2008, pp. 5385–5388.
[15] HAMADOU A., LAMARI S., THOBEL J.-L., Dynamic modeling of a midinfrared quantum cascade laser, Journal of Applied Physics 105(9), 2009, p. 093116
[16] FERREIRA R., BASTARD G., Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures, Physical Review B 40(2), 1989, pp. 1074–1086.
[17] YARIV A., Quantum Electronics, 3rd Edition, John Wiley and Sons, New York, 1988.
[18] DANIČIĆ A., RADOVANOVIĆ J., MILANOVIĆ V., INDJIN D., IKONIĆ Z., Optimization and magnetic-field tunability of quantum cascade laser for applications in trace gas detection and monitoring, Journal of Physics D: Applied Physics 43(4), 2010, p. 045101.
[19] RADOVANOVIĆ J., MIRČETIĆ A., MILANOVIĆ V., IKONIĆ Z., INDJIN D., HARRISON P., KELSALL R.W., Influence of the active region design on output characteristics of GaAs/AlGaAs quantum cascade lasers in a strong magnetic field, Semiconductor Science and Technology 21(3), 2006, pp. 215–220.
[20] FAIST J., Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits, Applied Physics Letters 90(25), 2007, p. 253512.
[21] HOFLING S., KALLWEIT R., SEUFERT J., KOETH J., REITHMAIER J.P., FORCHEL A., Reduction of the threshold current density of GaAs/AlGaAs quantum cascade lasers by optimized injector doping and growth conditions, Journal of Crystal Growth 278(1–4), 2005, pp. 775–779.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPW7-0018-0050
Identyfikatory