Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Optica Applicata

Tytuł artykułu

A novel methane detection system based on InGaAsP distributed feedback laser

Autorzy Cong, M.  Guo, S.  Wang, Y. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The authors report a novel methane detection system based on InGaAsP DFB (distributed feedback) laser using the WMS-2f (wavelength modulation spectroscopy) to prompt the sensitiv-ities of TDLAS (tunable diode laser absorption spectroscopy) measurement technology at the R(3) transition of the 2?3 band of methane. The system employs a novel signal processing to cancel emitter-amplitude variations as well as changes in the optical transmission not due to the target gas. High accuracy and low detecting limit (about 1 ppm) are achieved at normal air pressure and room temperature. Excellent stability and fast response are also found based on the detection system in 30 days. These results suggest that our system is a good candidate for CH4 detectors.
Słowa kluczowe
EN optical sensor   methane   distributed feedback (DFB) laser  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Optica Applicata
Rocznik 2011
Tom Vol. 41, nr 3
Strony 639--648
Opis fizyczny Bibliogr. 22 poz.
autor Cong, M.
autor Guo, S.
autor Wang, Y.
  • State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P.R. China
[1] WRIGHT S., DUXBURY G., LANGFORD N., A compact quantum-cascade laser based spectrometer for monitoring the concentrations of methane and nitrous oxide in the troposphere, Applied Physics B 85(2–3), 2006, pp. 243–249.
[2] KOZLOWSKA K., LUKOWIAK A., SZCZUREK A., DUDEK K., MARUSZEWSKI K., Sol–gel coatings for electrical gas sensors, Optica Applicata 35(4), 2005, pp. 783–790.
[3] YADAV B.C., YADAV R.C., DUBEY G.C., Optical humidity sensing behaviour of sol–gel processed nanostructured ZnO films, Optica Applicata 39(3), 2009, pp. 617–627.
[4] KOSTEREV A.A., CURL R.F., TITTEL F.K., GMACHL C., CAPASSO F., SIVCO D.L., BAILLARGEON J.N.,HUTCHINSON A.L., CHO A.Y., Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser, Optics Letters 24(23), 1999, pp. 1762–1764.
[5] BERGAMASCHI P., SCHUPP M., HARRIS G.W., High-precision direct measurements of 13CH4/12CH4and 12CH3D/12CH4 ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer, Applied Optics 33(33), 1994, pp. 7704–7716.
[6] WERLE P., SLEMR F., MAURER K., KORMANN R., MÜCKE R., JÄNKER B., Near- and mid-infrared laser-optical sensors for gas analysis, Optics and Lasers in Engineering 37(2–3), 2002, pp. 101–114.
[7] LACKNER M., TOTSCHNIG G., WINTER F., ORTSIEFER M., AMANN M.C., SHAU R., ROSSKOPF J., Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate, Measurement Science and Technology 14(1), 2003, pp. 101–106.
[8] LUCCHESINI A., GOZZINI S., Methane diode laser overtone spectroscopy at 840 nm, Journal of Quantitative Spectroscopy and Radiative Transfer 103(1), 2007, pp. 209–216.
[9] HENNIG O., STRZODA R., MÁGORI E., CHEMISKY E., TUMP C., FLEISCHER M., MEIXNER H., EISELE I.,Hand-held unit for simultaneous detection of methane and ethane based on NIR-absorption spectroscopy, Sensors and Actuators B: Chemical 95(1–3), 2003, pp. 151–156.
[10] TSUJI K., FUJIKAWA S., YAMADA K., YOSHIDA N., YAMAMOTO K., KIKUGAWA T., Precise measurement of the 13CH4/12CH4 ratio of diluted methane using a near-infrared laser absorption spectrometer,Sensors and Actuators B: Chemical 114(1), 2006, pp. 326–333.
[11] KOSTEREV A.A., CURL R.F., TITTEL F.K, GMACHL C., CAPASSO F., SIVCO D.L., BAILLARGEON J.N.,HUTCHINSON A.L., CHO A.Y., Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy, Applied Optics 39(24), 2000, pp. 4425–4430.
[12] PUSTELNY T., MACIAK E., OPILSKI Z., BEDNORZ M., Optical interferometric structures for application in gas sensors, Optica Applicata 37(1–2), 2007, pp. 187–194.
[13] FILHO M.B., DA SILVA M.G., STHEL M.S., SCHRAMM D.U., VARGAS H., MIKLÓS A., HESS P., Ammonia detection by using quantum-cascade laser photoacoustic spectroscopy, Applied Optics 45(20), 2006, pp. 4966–4971.
[14] CASTRILLO A., CASA G., GIANFRANI L., Oxygen isotope ratio measurements in CO2 by means of a continuous-wave quantum cascade laser at 4.3 μm, Optics Letters 32(20), 2007, pp. 3047–3049.
[15] MITSCHERLING C., LAUENSTEIN J., MAUL C., VESELOV A.A., VASYUTINSKII O.S.,. GERICKE K.H.,Non-invasive and isotope-selective laser-induced fluorescence spectroscopy of nitric oxide in exhaled air, Journal of Breath Reseach 1(2), 2007, p. 026003.
[16] MARGOLIS J.S., Line strength measurements of the 2ν3 band of methane, Journal of Quantitative Spectroscopy and Radiative Transfer 13(11), 1973, pp. 1097–1103.
[17] TAI H., YAMAMOTO K., OSAWA S., UEHARA K., Remote detection of methane using a 1.65 μm diode laser in combination with optical fibers, Proceedings of the Seventh Optical Fiber Sensors Conference 1990, IREE, Sydney, pp. 51–54.
[18] RAY A., BANDYOPADHYAY A., DE S., RAY B., GHOSH P.N., A simple scanning semiconductor diode laser source and its application in wavelength modulation spectroscopy around 825 nm, Optics and Laser Technology 39(2), 2007, pp. 359–367.
[19] REID J., LABRIE D., Second-harmonic detection with tunable diode lasers – Comparison of experiment and theory, Applied Physics B 26(3), 1981, pp. 203–210.
[20] UEHARA K., THAI H., Remote detection of methane with a 1.66 μm diode laser, Applied Optics 31(6), 1992, pp. 809–814.
[21] ROTHMAN L.S., BARBE A., BENNER D.C., BROWN L.R., CAMY-PEYRET C., CARLEER M.R., CHANCE K., CLERBAUX C., DANA V.,The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001, Journal of Quantitative Spectroscopy and Radiative Transfer 82(1–4), 2003, pp. 5–44.
[22] MASSIE C., STEWART G., MCGREGOR G., GILCHRIST J.R., Design of a portable optical sensor for methane gas detection, Sensors and Actuators B: Chemical 113(2), 2006, pp. 830–836.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPW7-0018-0043