Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Optica Applicata

Tytuł artykułu

Effect of structure factor on aggregate number concentration estimated using Rayleigh-Debye-Gans scattering theory

Autorzy Lee, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN We suggest that the structure factor could be a source of uncertainty when the number concentration of non-absorbing aggregate particles is experimentally determined from Rayleigh-Debye-Gans (RDG) scattering theory. Different characteristics of various structure factors have been examined as a function of qRg. We present deviation of various structure factors from the exponential structure factor. Number concentrations estimated from various structure factors differ in the range of 1.0 < qRg < 10 where most of flame-synthesized non-absorbing particles are present as aggregates. We compare aggregate number concentrations of silica particles determined using various structure factors.
Słowa kluczowe
EN Rayleigh-Debye-Gans (RDG) scattering   aggregate particles   non-absorbing particles  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Optica Applicata
Rocznik 2011
Tom Vol. 41, nr 3
Strony 519--525
Opis fizyczny Bibliogr. 14 poz.
autor Lee, J.
  • School of Mechanical Engineering, Korea University of Technology and Education, Cheon An, 330-708, South Korea
[1] SORENSEN C.M., CAI J., LU N., Test of static structure factors for describing light scattering from fractal soot aggregates, Langmuir 8(8), 1992, pp. 2064–2069.
[2] SORENSEN C.M., CAI J., LU N., Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames, Applied Optics 31(30), 1992, pp. 6547–6557.
[3] KÖYLÜ Ü.Ö., MCENALLY C.S., ROSNER D.E., PFEFFERLE L.D., Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique, Combustion and Flame 110(4), 1997, pp. 494–507.
[4] XING Y., KOYLU U.O., ROSNER D.E., In situ light-scattering measurements of morphologically evolving flame-synthesized Oxide nanoaggregates, Applied Optics 38(12), 1999, pp. 2686–2697.
[5] SORENSEN C.M., Light scattering by fractal aggregates: A review, Aerosol Science and Technology 35(2), 2001, pp. 648–687.
[6] ZHAO Y., MA L., Applicable range of the Rayleigh–Debye–Gans theory for calculating the scattering matrix of soot aggregates, Applied Optics 48(3), 2009, pp. 591–597.
[7] ZHAO Y., MA L., Assessment of two fractal scattering models for the prediction of the optical characteristics of soot aggregates, Journal of Quantitative Spectroscopy and Radiative Transfer 110(4–5), 2009, pp. 315–322.
[8] FISHER M.E., BURFORD R.J., Theory of critical-point scattering and correlations I. The Ising model, Physical Review 156(2), 1967, pp. 583–622.
[9] TEIXEIRA J., Experimental methods for studying fractal aggregates, [In] On Growth and Form, Fractal and Non-Fractal Patterns in Physics, [Eds.] Stanley H.E., Ostrowsky N., Dordrecht, 1986, pp. 145–162.
[10] DOBBINS R.A., MEGARIDIS C.M., Absorption and scattering of light by polydisperse aggregates, Applied Optics 30(33), 1991, pp. 4747–4754.
[11] FRELTOFT T., KJEMS J.K., SINHA S.K., Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering, Physical Review B 33(1), 1986, pp. 269–275.
[12] BERRY M.V., PERCIVAL I.C., Optics of fractal clusters such as smoke, Optica Acta 33(5), 1986, pp. 577–591.
[13] GHAZY R., EL-BARADIE B., EL-SHAER A., EL-MEKAWEY F., Static laser light scattering (SLLS) investigations of the scattering parameters of a synthetic polymer, Optics and Laser Technology 31(6), 1999, pp. 447–453.
[14] ZIELINSKI T., PETELSKI T., Studies of aerosol physical properties in the coastal area, Optica Applicata 36(4), 2006, pp. 629–634.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPW7-0018-0033