Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Optica Applicata

Tytuł artykułu

Stress modification in gold metal thin films during thermal annealing

Autorzy Prószyński, A.  Chocyk, D.  Gładyszewski, G. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Stress evolution during deposition of 50 nm Au thin films by thermal evaporation in a UHV system and then stress modification during thermal vacuum annealing have been performed. For stress measurement a substrate curvature approach has been applied. The changes in stress versus temperature linked to a modification of microstructure has been interpreted. To obtain any information about structural changes in the film X-ray diffraction measurements has been performed. We can conclude from the measurements that during the first cycle some irreversible structural modifications occur in a metal film.
Słowa kluczowe
EN thin films   annealing   strain   stress  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Optica Applicata
Rocznik 2009
Tom Vol. 39, nr 4
Strony 705--710
Opis fizyczny bibliogr. 14 poz.,
autor Prószyński, A.
autor Chocyk, D.
autor Gładyszewski, G.
  • Advanced Materials Engineering Research Group, Department of Applied Physics, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
[1] FLINN P.A., GARDNER D.S., NIX W.D., Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history, IEEE Transactions on Electron Devices 34(3), 1987, pp. 689–699.
[2] GARDNER D.S., FLINN P.A., Mechanical stress as a function of temperature in aluminum films, IEEE Transactions on Electron Devices 35(12), 1988, pp. 2160–2169.
[3] JIUN-SHYA YU, MANIATTY A.M., KNORR D.B., Model for predicting thermal stresses in thin polycrystalline films, Journal of the Mechanics and Physics of Solids 45(4), 1997, pp. 511–534.
[4] BOSTROM O., Wafer shape control study of the reactivity in Ti/Al dual layers and its effect on the stress, PhD Thesis, Faculté des Sciences et Techniques de Saint- Jérôme, Marseille, France, 2001.
[5] SHEN Y.-L., SURESH S., Thermal cycling and stress relaxation response of Si-Al and Si-Al-SiO2 layered thin films, Acta Metallurgica Et Materialia 43(11), 1995, pp. 3915–3926.
[6] KELLER R.-M., BAKER S.P., ARZT E., Stress–temperature behavior of unpassivated thin copper films, Acta Materialia 47(2), 1999, pp. 415–426.
[7] WEISS D., GAO H., ARZT E., Constrained diffusional creep in UHV-produced copper thin films, Acta Materialia 49(13), 2001, pp. 2395–2403.
[8] VINCI R.P., ZIELINSKI E.M., BRAVMAN J.C., Thermal strain and stress in copper thin films, Thin Solid Films 262(1–2), 1995, pp. 142–153.
[9] PROSZYNSKI A., Stress modification in thin metal films, PhD Thesis, Łódź University of Technology, Poland 2008 (in Polish).
[10] STONEY G.G., The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society A 82(553), 1909, pp. 172–175.
[12] FLORO J.A., HEARNE S.J., HUNTER J.A., KOTULA P., CHASON E., SEEL S.C., THOMPSON C.V., The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films, Journal of Applied Physics 89(9), 2001, pp. 4886–4897.
[13] FLORO J.A., CHASON E., CAMMARATA R.C., SROLOVITZ D.J., Physical origins of intrinsic stresses in Volmer–Weber thin films, MRS Bulletin 27(1), 2002, pp. 19–25.
[14] CHOCYK D., PROSZYNSKI A., GLADYSZEWSKI G., Diffusional creep induced stress relaxation in thin Cu films on silicon, Microelectronic Engineering 85(10), 2008, pp. 2179–2182.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPW7-0012-0088