Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Materials Science Poland

Tytuł artykułu

Coupled space-time multiscale simulations of dynamic delamination tests

Autorzy Mariani, S.  Pandolfi, A.  Pavani, R. 
Treść / Zawartość
Warianty tytułu
Konferencja E-MRS 2004 Fall Meeting Warsaw, Poland , 6-10 September,2004
Języki publikacji EN
EN The aim of this work was to numerically investigate the dynamic debonding of a thin composite laminate from a rigid substrate. The laminate is elastic and the separation surface behaviour is governed by a cohesive softening law. By way of simplification, the bending dominated deflection of the free part of the laminate is described through the Euler - Bernoulli kinematics. In this context, the partial differential equation governing the laminate motion is characterized by two length scales and two time scales. To accurately simulate the growth of delamination, a coupled space-time multiscale integration was used. The qualifying features of such an approach are: i) a fine spatial discretization across the process zone, where the evolution of the cohesive tractions demands a detailed description; ii) a high order accurate time integration algorithm, capable of damping spurious high frequency oscillations of the solution. The results of a two-stage peel test testify to the good performance of the approach applied.
Słowa kluczowe
EN non-linear dynamic fracture mechanics   delamination   heterogeneous multiscale method  
Wydawca Springer
Czasopismo Materials Science Poland
Rocznik 2005
Tom Vol. 23, No. 2
Strony 509--519
Opis fizyczny Bibliogr. 12 poz.
autor Mariani, S.
  • Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Milano, Italy
autor Pandolfi, A.
  • Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Milano, Italy
autor Pavani, R.
  • Dipartimento di Matematica ''Francesco Brioschi'', Politecnico di Milano, Milano, Italy
[1] FREUND L.B., Dynamic Fracture Mechanics, Cambridge University Press, 1990.
[2] XU X.-P., NEEDLEMAN A., J. Mech. Phys. Solids, 42 (1994) 1397.
[3] YANG B., RAVI -CHANDAR K., J. Mech. Phys. Solids, 44 (1996), 1955.
[4] PANDOLFI A., KRYSL P., ORTIZ M., Int. J. Fracture, 95 (1999), 1.
[5] ROSAKIS A.J., Adv. Phys., 51 (2002),1189.
[6] COSTANZO F., WALTON J.R., J. Mech. Phys. Solids, 50 (2002),1649.
[7] YU Q., FISH J., Int. J. Solids Struct., 39 (2002), 6429.
[8] HILBER H.M., HUGHES T.J.R., TAYLOR R.L., Earthquake Eng. Struct. Dynamics, 5 (1977), 283.
[9] CAMACHO G.T., ORTIZ M., Int. J. Solids Struct., 33 (1996), 2899.
[10] CORIGLIANO A., MARIANI S., PANDOLFI A., Compos. Sci.e Technol., to appear, 2005.
[11] E W., ENGQUIST B., Commun. Math. Sciences, 1 (2003), 87.
[12] STRIKWERDA J.C., Finite Difference Schemes and Partial Differential Equations, Chapman & Hall, 1989.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPW7-0002-0049