Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Construction scheduling with tabu search algorithm and uncertain data
Języki publikacji
Abstrakty
W pracy rozpatrujemy problem harmonogramowania przedsięwzięć budowlanych realizowanych w systemie potokowym. Są to bardzo ważne zagadnienia praktyki budowlanej, mające znaczący i bezpośredni wpływ na ostateczne koszty realizacji. Przedstawiamy założenia do harmonogramowania robót, algorytm jego rozwiązywania opartego na metodzie przeszukiwania z tabu (ang. tabu search) oraz jego modyfikację dla przypadku, gdy niepewne są czasy wykonywania prac. Porównujemy stabilność rozwiązań w przypadku, gdy niepewne dane są reprezentowane przez zmienne losowe o rozkładzie normalnym lub liczby rozmyte w trzypunktowej reprezentacji.
This paper deals with some problems of synchronizing construction activities differing in their execution times. The methodology of calculating the times of execution of the activities, ensuring that there will be no collisions between them, is presented. The methodology is illustrated with numerical examples showing the successive steps of the algorithm and it is applied to complex works modelled as the flow shop problem. The tabu search algorithm is adapted to solve the problem.
Rocznik
Tom
Strony
80--95
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
- Instytut Informatyki, Automatyki i Robotyki, Politechnika Wrocławska, wojciech.bozejko@pwr.wroc.pl
Bibliografia
- 1. Afanasjev V.A, Afanasjev A.V., Potocnaja organizacja rabot v stroitelstwie, Sankt-Petersburg 2000.
- 2. Arditi D., Tokdemir O.B., Suh K., Scheduling system for repetitive unit construction using line-of-balance technology, Department of Civil and Architectural Engineering, Illinois Institute of Technology, Department of Civil Engineering, Honan University, Honam, South Korea 2002.
- 3. Bożejko W., Hejducki Z., Rogalska M., Wodecki M., Scheduling of construction projects with a hybrid evolutionary algorithm’s application, [in:] Evolutionary Algo-rithms, edited Eisuke Kita, INTECH, Rijeka 2011.
- 4. Bożejko W., Wodecki M., Solving Flow Shop Problem by Parallel Simulated Annealing, LNCS, Springer-Verlag, 2328, 2002, pp. 236-244.
- 5. Dean B.C., Approximation algorithms for stochastic scheduling problems, PhD the-sis, MIT, 2005.
- 6. Dubois D., Prade H., Theorie des Possibilites. Applications a la representation des connaissances en informatique, MASSON, Paris 1988.
- 7. Garey M.R., Johnson D.S., Seti R., The complexity of flowshop and jobshop scheduling, [in:] “Mathematics of Operations Research”, no. 1/1976, pp. 117-129.
- 8. Grabowski J., Wodecki M., A very fast tabu search algorithm for the permutation flow shop problem with makespan criterion, [in:] “Computers & Operations Re-search”, no. 31/2004, pp. 1891-1909.
- 9. Hamerlink D.J., Rowings J.E., Linear scheduling model: Development of controlling activity path, [in:] “Journal of Construction Engineering and Management”, no. 124(4)/1998, pp. 266-268.
- 10. Harris R.B., Ionnou P.G., Scheduling projects with repeating activities, [in:] “Journal of Construction Engineering and Management”, no. 124(4)/1998, pp. 269-278.
- 11. Hejducki Z., Zarządzanie czasem w procesach budowlanych z zastosowaniem modeli macierzowych, Oficyna Wydawnicza PWr, Wrocław 2004.
- 12. Hejducki Z., Rogalska M., Time coupling methods, Oficyna Wydawnicza PWr, Wrocław 2011.
- 13. Ishibuschi H., Murata T., Scheduling with Fuzzy Duedate and Fuzzy Processing Time, [in:] Scheduling Under Fuzziness, edited Słowiński R., Hapke M., Springer-Verlag, 2000, pp. 113-143.
- 14. Ishii H., Fuzzy combinatorial optimization, [in:] “Japanese Journal of Fuzzy Theory and Systems”, vol. 4, no. 1/1992.
- 15. Karp R.M., Reducibility amomg combinatorial problems, [in:] Complexity of Computer Computation, edited Miller R.E., Thatcher J.W., Plenum Press, New York 1972, pp. 85-104.
- 16. Mattila K.G., Acse A.M., Park A., Comparison of Linear Scheduling Model and Repetitive Scheduling Method, [in:] “J.Constr. Eng. Manage.”, no. 129(1)/2003, pp. 56-64.
- 17. Mattila K.G., Abraham D.M., Resource leveling of linear schedules using integer linear programming, [in:] “Journal of Construction Engineering and Management”, ASCE, no. 120(4)/1998, pp. 232-244.
- 18. Navaz M., Enscore E.E., Ham I., A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem, [in:] “OMEGA”, no. 11/1/1983, pp. 91-95.
- 19. Nowicki E., Smutnicki C., A fast tabu search algorithm for the permutation flow-shop problem, [in:] “European Journal of Operational Research”, no. 91/1996, pp. 160-175.
- 20. Ogbu F., Smith D., The Application of the Simulated Annealing Algorithm to the Solution of the n/m/Cmax Flowshop Problem, [in:] “Computers & Operations Re-search”, no. 17/3/1990, pp. 243-253.
- 21. OR Library, [online]. [dostęp: 2012]. Dostępny w Internecie: http://people.brunel.ac. uk/ mastjjb/jeb/orlib/flowshopinfo.html.
- 22. Osman I., Potts C., Simulated Annealing for Permutation Flow-Shop Scheduling, [in:] “OMEGA”, no. 17/6/1989, pp. 551-557.
- 23. Reeves C., A Genetic Algorithm for Flowshop Sequencing, [in:] “Computers & Operations Research”, no. 22/1/1995, pp. 5-13.
- 24. Rogalska M., Bożejko W., Hejducki Z., Wodecki M., Harmonogramowanie robót budowlanych z zastosowaniem algorytmu tabu search i rozmytymi czasami wykonania robót, [w:] „Przegląd Budowlany”, 7/8/2007, Warszawa 2007, s. 76-80.
- 25. Senouci, A.B., Eldin, N.N., Dynamic programming approach to scheduling of nonserial linear project, [in:] “Journal of Computing in Civil Engineering”, no. 10/1996, pp. 106-144.
- 26. Skorupka D., Risk Management in Building Projects, [in:] AACE International Transaction, (CSC.1.91– CSC.1.96), The Association for the Advancement of Cost Engineering, USA, Orlando 2003.
- 27. Thabet W.Y., Beliveau Y.J., HVLS: horizontal and vertical logic scheduling for multistory projects, [in:] “Journal of Construction Engineering and Management”, no. 120/1994, ASCE, pp. 875-892.
- 28. Ustinovicius L., Decision-support System for Determining the Efficiency of Investments in Construction: Summary of the research report presented for habilitation, Technika, Vilnius 2003.
- 29. Vondrák J., Probabilistic methods in combinatorial and stochastic optimization, PhD, MIT, 2005.
- 30. Vorster M. C., Parvin C. M., Linear scheduling for highway constractors and state DOT’s, Videotapes, P&W Publications, Richmond, Va, 1990.
- 31. Vorster M.C., Beliveau Y.J., Bafna, T., Linear scheduling and visualization, [in:] “Transp. Res. Rec.“, no. 1351/1992, pp. 32-39.
- 32. Wang C., Huang Y., Controling activity interval times in LOB scheduling. [in:] “Construction Management and Economics”, no. 16/1998, pp. 5-16.
- 33. Zavadskas E.K., Book review. Methods and models of research in construction projects engineering, [in:] “Journal of Business Economics and Management”, no. 9(3)/2008, pp. 240-243.
- 34. Zavadskas E.K., History and evolving trends of construction colloquia on sustainability and operational research, [in:] “Technological and Economic Development of Economy”, no. 14(4)/2008, pp. 578-592.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW6-0031-0008