Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wykorzystanie systemu ekspertowego do diagnozowania okrętowego silnika tłokowego
Języki publikacji
Abstrakty
The paper presents a diagnostic system for marine diesel engine based on an expert system model. The research relevant to knowledge acquisition for this system was done, knowledge data set was built and general structures of the expert system was proposed. Basic sources of knowledge which can be used for construction of knowledge data set are also identified. The basic knowledge related to the diesel diagnostic was undertaken from experts and diagnostic data base. The paper questionnaire was used to the knowledge acquisition from experts. The basic knowledge related to the marine diesel exploitation was undertaken. The rule induction algorithms was used to knowledge acquisition from data base. During the experiment efficiency of LEM induction algorithms was compared to new MODLEM and EXPLORE algorithms. Training and test data were acquired from experiment on marine engine Sulzer 3AL 25/30.
W artykule przedstawiono koncepcję systemu diagnostycznego okrętowego silnika tłokowego opartą na modelu systemu ekspertowego. Zrealizowano pozyskiwanie wiedzy diagnostycznej, opracowano bazę wiedzy oraz zaproponowano ogólną strukturę systemu. Wiedza dla ekspertowego systemu diagnozowania silnika okrętowego została pozyskana od ekspertów (specjalistów w dziedzinie eksploatacji) oraz z diagnostycznych baz danych. Do pozyskiwania wiedzy od ekspertów zastosowano wywiad kwestionariuszowy. Podjęto próbę pozyskania podstawowej wiedzy z dziedziny eksploatacji silników umożliwiającą ocenę ich stanu technicznego. Pozyskiwanie wiedzy z baz danych przeprowadzono z wykorzystaniem indukcyjnych metod uczenia maszynowego. Dane uczące dla algorytmów indukcji zostały zgromadzone w wyniku realizacji eksperymentu czynnego na silniku Sulzer 3Al 25/30.
Czasopismo
Rocznik
Tom
Strony
45--56
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
autor
- Faculty of Marine Engineering, Gdynia Maritime University, Morska Street 81-87, 81-225 Gdynia, Poland
Bibliografia
- 1. Moczulski, W., Metody pozyskiwania wiedzy dla potrzeb diagnostyki maszyn, ZN Pol. Śląskiej nr 1382, Seria: Mechanika z. 130, Gliwice 1997.
- 2. Sobocki, M., Wprowadzenie do metodologii badań pedagogicznych, Oficyna Wydawnicza IMPULS, Kraków 2001.
- 3. Grzywaczewski, Z., Niezawodność statków, Wydawnictwa Przemysłu maszynowego WEMA, Warszawa 1988.
- 4. Żółtowski, B., Cempel, Cz., Inżyniera Diagnostyki Maszyn, Polskie Towarzystwo Diagnostyki Technicznej, Instytut Technologii Eksploatacji PIB Radom, Warszawa, Bydgoszcz, Radom 2004.
- 5. Stefanowski, J., Algorytmy indukcji reguł decyzyjnych w odkrywaniu wiedzy, Wydawnictwo Politechniki Poznańskiej, Rozprawy nr 361, Poznań 2001.
- 6. Predki, B., Slowinski, R., Stefanowski, J., Susmaga, R., Wilk, Sz., ROSE - Software Implementation of the Rough Set Theory, In., L.Polkowski, A. Skowron, eds. Rough Sets and Current Trends in Computing, Lecture Notes in Artificial Intelligence, vol. 1424. Springer-Verlag, Berlin (1998), 605-608.
- 7. Predki, B., Wilk, Sz., Rough Set Based Data Exploration Using ROSE System. In., Z. W. Ras, A. Skowron, eds. Foundations of Intelligent Systems, Lecture Notes in Artificial Intelligence, vol. 1609. Springer-Verlag, Berlin (1999), 172-180.
- 8. Cholewa, W., Diagnostyczny system doradczy DT3D100. Organizacja procesu wnioskowania, Raport częściowy nr DT6D131 z realizacji projektu PBZ-038-06, KPKM Pol. Śląskiej, Gliwice.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW6-0016-0004