PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electronic transport through carbon nanotubes with ferromagnetic electrodes or in magnetic fields

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
I study spin-dependent electronic transport through carbon nanotubes (CNTs) either sandwiched between ferromagnetic contacts or placed at external magnetic fields. The attention is directed to the conductance dependence on: (i) geometrical sizes (length and diameter of the CNTs), (ii) chirality, and (iii) conditions at CNT/contact interfaces. The CNTs are end-contacted to fcc (111) metallic leads, and relative atomic positions at the interfaces are determined by a relaxation procedure. Additionally a charge neutrality condition is imposed on the extended molecule (i.e. the CNT with a few atomic layers of the leads) in order to fix the band lineup of the whole system. Using a single-band tight-binding model and a Green's function technique it is shown that if electrodes are ferromagnetic - a quite considerable giant magnetoresistance effect can occur. For paramagnetic electrodes in turn, in the parallel magnetic field, clear Aharonov-Bohm oscillations are observed with distinct minima in the conductance. A depth of the dips depends on diameters of the CNTs, most likely due to some unintentional doping coming from the contacts. In the case of the perpendicular geometry, pronounced conductance oscillations appear whenever a magnetic length gets smaller than a perimeter of the CNT.
Rocznik
Strony
649--657
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
Bibliografia
  • [1] SAITO R., DRESSELHAUS M.S., DRESSELHAUS G., Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.
  • [2] MINOT D.E., YAISH Y., SAZONOVA V., PARK J.-Y., DRINK M., MCEUEN P.L., Phys Rev. Lett., 90 (2003), 156401.
  • [3] AJIKI H., , ANDO T., J. Phys. Soc. Jpn., 62 (1993), 1255.
  • [4] ZARIC S., OSTOLIC G.N., KONO J., SHAVER J., MOORE V.C., STRANO M.S., HAUGE R.H., SMALLEY R.E., WEI X., Science, 304 (2004), 1129.
  • [5] COSKUN U.C., WEI T.-C., VISHVESHWARA S., GOLDBART P.M., BEZRYADIN A., Science, 304 (2004), 1132.
  • [6] KROMPIEWSKI S., J. Magn. Magn. Mater., 272–276 (2004), 1645.
  • [7] KROMPIEWSKI S., Phys. Stat. Sol. (b), 242 (2005), 226.
  • [8] ROCHE S., TRIOZON F., RUBIO A., MAYOU D., Phys. Rev. B, 64 (2001), 121401.
  • [9] SANVITO S., Handbook of Computational Nanotechnology, American Scientific Publ. (Stevenson Ranch, CA, 2005); also cond-mat/0503445.
  • [10] TSUKAGOSHI K., ALPHENAAR B.A., AGO H., Nature (London), 401 (1999), 572.
  • [11] ZHAO B., MÖNCH I., MÜHL T., SCHNEIDER C.M., Appl. Phys. Lett., 80 (2002), 3144.
  • [12] JENSEN A., NYGĹRD J., BORGGREEN J., [in:] Toward the Controllable Quantum States, Proc. Internat. Symp. Mesoscopic Superconductivity and Spintronics, H. Takayanagi, J. Nitta (Eds.), World Scientific, Singapore, 2003, 33–37.
  • [13] KROMPIEWSKI S., J. Phys.: Condens. Matter, 16 (2004), 2981.
  • [14] KROMPIEWSKI S., GUTIERREZ R., CUNIBERTI G., Phys Rev. B, 69 (2004), 155423.
  • [15] SAHOO S., KONTOS T., SCHÖNENBERGER C., SÜRGERS C., Appl. Phys. Lett., 86 (2005), 112109.
  • [16] TRIOZON F., ROCHE S., RUBIO A., MAYOU D., Phys. Rev. B, 69 (2004), 121410.
  • [17] STOJETZ B., MIKO C., FERRÓ L., STRUNK C., Phys Rev. Lett., 94 (2005), 186802.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW1-0021-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.